Science Curriculum Analysis Worksheet

Current research on science education emphasizes the importance of integrating the learning progressions from all three dimensions included in *A Framework for K-12 Science Education* in order to deepen student understanding of the big ideas connected to scientific phenomena. This Curriculum Analysis Worksheet is a tool that can be used to align your current instructional practices to a 3-dimensional model of instruction, designed to deepen student learning.

1.	Identify a science concept or concepts within the Arizona Science Standard from Strands 4, 5, or 6 that you teach at your grade			
	evel/course. Record the science concept, big idea/scientific phenomena, and the three-dimensional learning outcome(s).			
2.	Identify learning progressions from each of the three dimensions that will be bundled together to build student conceptual			
	understanding of the big idea/scientific phenomena selected in Step 1.			
3.	a. Identify objectives from the Arizona Science Standard from Strands 1, 2 and 3 that align with the Science and Engineering			
	Practices learning progression(s) you have identified in Step 2.			
	b. Examine your current science curriculum to identify ways you can modify instruction to reach the vision of A Framework for			
	K-12 Science Education while you currently teach grade level objectives aligned to the Arizona Science Standard.			
4.	 Identify the current objectives from the Arizona Science Standard from Strands 4, 5, and 6 that align with the Disciplinary 			
	Core Ideas learning progression(s) you have identified in Step 2.			
	b. Examine your current science curriculum to identify ways you can modify instruction to reach the vision of A Framework for			
	K-12 Science Education while you currently teach grade level objectives aligned to the Arizona Science Standard.			
5.	 Identify the current unifying concept(s) from page viii of the Arizona Science Standard that aligns with the Crosscutting 			
	Concepts learning progression(s) you have identified in Step 2.			
	b. Examine your current science curriculum to identify ways you can modify instruction to reach the vision of A Framework for			
	K-12 Science Education while you currently teach grade level objectives aligned to the Arizona Science Standard.			
6.	 Identify connections to grade level ELA/Literacy standards, as appropriate. 			
	 Identify connections to grade level Mathematics standards and practices, as appropriate. 			

Big Idea/Scientific Phenomenon : The rate of a cher concentration or the addition of a catalyst.	nical reaction can be altered when the reacting partic	cles experience a change in temperature, pressure,						
Three Dimensional Learning Outcomes:								
 Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs 								
Science and Engineering Practices Learning Progression (See Learning Progressions for 6-12 Science) Planning and Carrying Out Investigations	Disciplinary Core Ideas Learning Progression (See Learning Progressions for 6-12 Science) AZ Strand 5 Concept 4: Chemical Reactions	Crosscutting Concepts Learning Progression (See Learning Progressions for 6-12 Science) Patterns						
 Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. 	 Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in total binding energy (i.e., the sum of all bond energies in the set of molecules) that are matched by changes in kinetic energy. 	scales and cite patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments.						
 Constructing Explanations and Designing Solutions Apply scientific principles and evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects. 		Systems and System Models Students investigate or analyze a system by defining its boundaries and initial conditions, as well as its inputs and outputs. They use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and interactions within and between systems at different scales. They use models and simulations to predict the behavior of a system, and recognize that these predictions have limited precision and reliability due to the assumptions and approximations inherent in the models. They design systems to do specific tasks.						

1.

Arizona Science Concept: Strand 5 Concept 4: Chemical Reactions **Big Idea/Scientific Phenomenon**: The rate of a chemical reaction can be altered when the reacting particles experience a change in

	Identify performance objectives from Strands 1-3 within the Arizona Science Standard that		Gap Analysis/Curriculum Examination
	align to the learning progressions listed above.		Refer to the Science and Engineering practice learning progressions within the Learning
	(Strand 1: Inquiry: Strand 2: History and Nature of Science: Strand 3: Science and Social		Progressions for 9-12 Science document and your current curriculum to answer the
	Perspectives)		following questions
			What scientific phonomonon will students investigate and connect to the high
	Concent 1: Observations Questions and Hypotheses		ideo 2
	Concept 1. Observations, questions, and hypotheses		
	romulate predictions, questions, or hypotheses based on observations. Evaluate appropriate		what practices are currently missing from my curriculum?
	resources.		What changes and refinements need to be made?
	PO 1. Evaluate scientific information for relevance to a given problem.		 What strategies/investigations can be implemented to achieve the vision?
	PO 2. Develop questions from observations that transition into testable hypotheses.		
	PO 3. Formulate a testable hypothesis.		Engage:
	PO 4. Predict the outcome of an investigation based on prior evidence, probability, and/or		Set up a demonstration with two glow sticks, one in an ice bath and
	modeling (not guessing or inferring).		Set up a demonstration with two glow sticks, one in an ice bath and
			one in a hot water bath. When students arrive discuss the differences
	Concept 2: Scientific Testing (Investigating and Modeling)		they see between the glow sticks. Ask students:
	Design and conduct controlled investigations.		What will hannen if the glow sticks are switched? What does this
	PO 1. Demonstrate safe and ethical procedures (e.g., use and care of technology, materials,		indicate chow the chowical reaction is the standard of this
	organisms) and behavior in all science inquiry.		indicate about the chemical reaction in the glow stick?
	PO 2. Identify the resources needed to conduct an investigation.	5	
	PO 3. Design an appropriate protocol (written plan of action) for testing a hypothesis:	h fo	Explore:
	 Identify dependent and independent variables in a controlled investigation. 	ΞY	Students will design an experiment to test how different factors
	 Determine an appropriate method for data collection (e.g., using balances, 	ca Co	students will design an experiment to test now unreferit factors
	thermometers, microscopes, spectrophotometer, using qualitative changes).	<u>e</u> e	(temperature, surface area, concentration) affect the rate of a
5	• Determine an appropriate method for recording data (e.g., notes, sketches,	Ĕй	reaction. Provide them with water, Alka Seltzer [®] tablets (or other
L	photographs, videos, journals (logs), charts, computers/calculators).	e a	effervescent antacid tablets) hot plates or Bunsen burners, ice
Ĭ	PO 4. Conduct a scientific investigation that is based on a research design.	ЧŬ	chervescent antacia tablets), not plates of bansen barnets, ice,
urre	O 5. Record observations, notes, sketches, questions, and ideas using tools such as journals, harts, graphs, and computers.	of A Scie	glassware, etc. Ask students to develop the procedure and an
			appropriate data table to record the results of the experiment.
		L2	
	Concent 3: Analysis Conclusions and Refinements	sic	Evalain
	incept 5: Analysis, conclusions, and refinements aluate experimental design, analyze data to explain results and propose further investigations		
	Design models		Use the data collected from the student created experiment and
	PO 1 Interpret data that show a variety of possible relationships between variables including:		teacher demonstrations to provide an evidence-based explanation
	nositive relationship, negative relationship or no relationship.		(Claim – Evidence - Reasoning) of how different factors affect the rate
	PO 2 Evaluate whether investigational data support or do not support the proposed hypothesis		(claim Evidence - Reasoning) of now different factors affect the face
	PO 2. Evaluate whether investigational data support of do not support the proposed hypothesis.		of a reaction.
	PO 4. Evaluate the design of an investigation to identify possible sources of procedural error,		
	including: sample size, trials, controls, analyses		Extend
	Concept 4: Communication		How can a chemical reaction between copper (II) suitate and
	Communicate results of investigations.		aluminum occur? Students will conduct an experiment for the
	PO 1. For a specific investigation, choose an appropriate method for communicating the results.		reaction between aqueous copper (II) sulfate and aluminum foil (Salt
	PO 2. Produce graphs that communicate data.		is required as a patalyst for this reaction to accur). The new data
	PO 3. Communicate results clearly and logically.		is required as a catalyst for this reaction to occur.) The new data
	PO 4. Support conclusions with logical scientific arguments.		collected should be used improve upon the original evidence based
			explanation (Claim – Evidence- Reasoning) for reaction rate.
			· · · · · · · · · · · · · · · · · · ·

4. Disciplinary Core Idea							
Current Performance Objectives	 Strand 5 Concept 4: Chemical Reactions Investigate relationships between reactants and products in chemical reactions. PO 2. Identify the indicators of chemical change, including formation of a precipitate, evolution of a gas, color change, absorption or release of heat energy. PO 8. Quantify the relationships between reactants and products in chemical reactions (e.g., stoichiometry, equilibrium, energy transfers). PO 10. Explain the energy transfers within chemical reactions using the law of conservation of energy. PO 11. Predict the effect of various factors (e.g., temperature, concentration, pressure, catalyst) on the equilibrium state and on the rates of chemical reaction. Concept 2: Science and Technology in Society Develop viable solutions to a need or problem. PO 2. Recognize the importance of basing arguments on a thorough understanding of the core concepts and principles of science and technology. 	Vision of A Framework for K-12 Science Education	 Gap Analysis Refer to the Content learning progressions within the Learning Progressions for 9-12 Science document and your current curriculum to answer the following questions. What cone idea(s) is/are currently targeted within my current curriculum? What changes and refinements need to be made? (add, refine, delete concepts) What strategies/investigations can be implemented to achieve the vision? Create a table for the class to document the evidence that a chemical reaction has occurred for each reaction that is done throughout the unit. Have students create a model of the molecular movement of the molecules in the light stick demonstration. Students show and explain their models of the light stick demonstration to the class. Set up two demonstrations or show videos to show the decomposition of 30% hydrogen peroxide; elephant toothpaste and genie in the bottle. Both demos require a catalyst for the reaction to occurred? What happens if we do not use the MgO in the reaction for genie the bottle? Provide students with chemical reactions and the corresponding activation energy graphs to provide an example of how reaction rates and the energy requirements can change based on the addition of a catalyst. Graph data collected in student experiments for rate of reaction. Have students compare the graphs and identify any trends that are seen in the data. Have students identify a real world example where increasing the rate of a reactions has a positive effect and one where it has a negative effect. 				

5. Crosscutting Concepts				
	Unifying Concepts and Processes (Crosscutting concepts) Listed in page viii of the front matter of the Arizona Science Standard, and explained in the National Science Education Standards (1995) pp. 115-119		Gap Analysis Refer to the Crosscutting Concepts learning progressions within the Learning Progressions for 9-12 Science document and your current curriculum to answer the following questions. • How is/are the crosscutting concept(s) made explicit within my current curriculum? • What changes and refinements need to be made? • What strategies/investigations can be implemented to achieve the vision?	
2	Systems, Order, and Organization		Patterns Provide opportunities for students to see the patterns in the evidence of chemical reactions including production of gas, color change, formation of a precipitate, and absorption or release of energy.	
	Evidence, Models, and Explanation		Systems and System Models Provide opportunities for students to evaluate activation energy graphs and discuss the patterns that exist in the type of energy input and output in the systems.	
Current Crosscutting Concept		Vision of A Framework for K-12 Science Education	Provide opportunities for students to model the kinetic molecular process that occurs and changes due to the rate of reaction.	