

Arizona's Mathematics Standards

General Overview of Arizona's Mathematics Standards

Teachers today must prepare students for a world of possibilities that may not currently exist. The workforce of tomorrow must be flexible, motivated, and be able to draw from a deep and vast skill set. Arizona's College and Career Ready Standards in mathematics provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what how to support them. The standards are focused, coherent, and relevant to the real world, describing the knowledge and skills that students need for success in college and careers. By setting high expectations with a commitment to succeed with all students, we are positioning our future workforce to be internationally competitive.

College and Career Ready Shifts for Mathematics

In order for students to be successful, educators must effectively implement the new changes to the standards. There are three key shifts associated with Arizona's College and Career Ready Standards in mathematics.

Focus — The goal is to focus strongly where the standards focus. The curriculum significantly narrows and deepens the way time and energy are spent in the mathematics classroom. The standards focus deeply on the major work of each grade so that students can gain strong foundations: solid conceptual understanding, a high degree of procedural skill and fluency, and the ability to apply the mathematics they know to solve problems inside and outside the mathematics classroom.

Coherence — Coherence is connecting ideas across grades, and linking to major topics within grades. The standards are designed around coherent progressions from grade to grade. Students build new understanding onto foundations built in previous years. Each standard is not a new event, but an extension of previous learning. Instead of allowing additional or supporting topics to detract from the focus of the grade, these topics can serve the grade-level focus.

Rigor — In major topics, conceptual understanding, procedural skill and fluency, and application are pursued with equal intensity.

- Emphasis is placed on conceptual understanding of key concepts, such as place value and ratios. Teachers support students' ability to access concepts from a number of perspectives so that students are able to see math as more than a set of mnemonics or discrete procedures.
- Students build speed and accuracy in calculation. Teachers structure class time and/or homework time for students to practice core functions, such as single-digit multiplication, so that they have access to more complex concepts and procedures.
- Students use math flexibly for applications. Teachers provide opportunities for students to apply math in context. Teachers in content areas outside of math, particularly science, ensure that students are using math to make meaning of and access content.

The Standards for Mathematical Practice describe characteristics and traits that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report *Adding It Up*: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedure flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

Overarching Habits of Mind of a Productive Mathematical Thinker	e of problems and ing them. precision.	Reasoning and Explaining MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments and critique the reasoning of others.
s of natic		Modeling and Using Tools
abit hen		MP. 4 Model with mathematics.
ing Hu e Mat	sense of solving d to prec	MP. 5 Use appropriate tools strategically.
rch ctiv	a .⊑ ⊑	Seeing Structure and Generalizing
verc	Make evere ir Atten	MP. 7 Look for and make use of structure.
0 Prd	MP.1 perse MP.6	MP. 8 Look for and express regularity in repeated reasoning.

In K-8 (Kindergarten, Elementary, and Middle School) each *grade* contains work on several *domains*, as described in the table below. For example: In Grade 1, the content includes Operations and Algebraic Thinking, Number and Operations in Base Ten, Measurement and Data, and Geometry.

Grade	К	1	2	3	4	5	6	7	8	HS Conceptual Categories
	Counting & Cardinality						Ratios Proport Relation	ional	Functions	Functions
	Operation	Algebra	aic Thiı	nking		Expression and Equations			Algebra	
ins	Number and Operations in Base Ten						The Number System		Number &	
Domains				Fractions			The Number System			Quantity
Ō	Meas	ent and	d Data			Statistics and Probability			Statistics &	
_									Probability	
	Geometry						Geometry		Geometry	
									Contemporary	
									Mathematics	

In High School, to accommodate the variation among states, the standards are arranged in *conceptual categories*, such as Algebra or Functions. In each conceptual category there are *domains*, such as Creating Equations and Interpreting Functions.

Conceptual Category	Number & Quantity	Algebra	Functions	Geometry	Statistics & Probability	Contemporary Mathematics (AZ Addition)
	The Real Number	Seeing Structure in	Interpreting Functions	Congruence	Interpreting Categorical &	
	System	Expressions	Tunctions	Circles	Quantitative Data	
su	Quantities	Arithmetic with Polynomials & Rational Expressions	Building Functions	Similarity, Right Triangles, & Trigonometry	Making Inferences & Justifying Conclusions	
Domains	The Complex Number System	Creating Equations	Linear, Quadratic, & Exponential Models	Expressing Geometric Properties with Equations Geometric Measurement & Dimension	Conditional Probability & the Rules of Probability	
	Vector & Matrix Quantities	Reasoning with Equations & Inequalities	Trigonometric Functions	Modeling with Geometry	Using Probability to Make Decisions	Discrete Mathematics