Mathematics Item Specifications

GRADE 8

Table of Contents

Introduction 4
Item Development Process 5
Test Construction Guidelines 6
Blueprint 6
Depth of Knowledge (DOK) 6
Calculators 6
Item Formats 7
Arizona Math Standards Grade 8 10
Grade 8 Math Item Specifications 12
Expressions and Equations 12
8.EE.A. 1 12
8.EE.A.2, 8.EE.A.2a, 8.EE.A.2b 13
8.EE.A. 3 14
8.EE.A. 4 15
8.EE.B. 5 16
8.EE.B. 6 17
8.EE.C.7, 8.EE.C.7a, 8.EE.C.7b 18
8.EE.C.8, 8.EE.C.8a, 8.EE.C.8b, 8.EE.C.8c 20
Standards for Functions 22
8.F.A. 1 22
8.F.A. 2 23
8.F.A. 3 24
8.F.B. 4 25
8.F.B. 5 27
Geometry 28
8.G.A. 1 28
8.G.A. 2 29
8.G.A. 3 30
8.G.A. 4 31
8.G.A. 5 32
8.G.B.6 33
8.G.B. 7 34
8.G.B.8 35
8.G.C. 9 36
Statistics and Probability \& The Number System 37
8.NS.A. 1 37
8.NS.A. 2 38
8.NS.A. 3 39
8.SP.A. 1 40
8.SP.A. 2 41
8.SP.A. 3 42
8.SP.A. 4 43
8.SP.B.5, 8.SP.B.5a, 8.SP.B.5b, 8.SP.B.5c. 44

Introduction

The Arizona Statewide Achievement Assessment for English Language Arts and Mathematics (AzMERIT) is Arizona's statewide achievement test. AzMERIT assesses the Arizona English Language Arts Standards and Arizona Mathematics Standards adopted by the Arizona State Board of Education in December 2016. AzMERIT will inform students, teachers, and parents about preparedness for college and careers upon graduating from high school. AzMERIT tests are computer-based, meaning that they can better assess students' critical thinking skills and provide them with opportunities to demonstrate a deeper understanding of the materials. Computer-based testing also allows for the use of a variety of innovative items types.

During the item-development process, all AzMERIT items are written in accordance with the Item Specifications and are reviewed and approved by a committee of Arizona educators to confirm alignment and appropriateness for inclusion in the test. AzMERIT items are generally representative of Arizona's geographic regions and culturally diverse population. Items are reviewed for the following kinds of bias: gender, racial, ethnic, linguistic, religious, geographic, and socioeconomic. Item reviews also include consideration of issues related to individuals with disabilities. Arizona community members also have an opportunity to review items for issues of potential concern to members of the community at large. Reviewers are asked to consider the variety of cultural, regional, philosophical, political, and religious backgrounds throughout Arizona, and then to determine whether the subject matter will be acceptable to Arizona students, families, and other members of Arizona communities.

This AzMERIT Item Specifications is a resource document that defines the content and format of the test and test items for item writers and reviewers. Each Item Specifications document indicates the alignment of items with the Arizona Mathematics Standards. It also serves to provide all stakeholders with information about the scope and function of assessment items. This document can also serve to assist educators to understand how assessment items are developed in alignment with the standards for English language arts and math. These item specifications for AzMERIT are intended to provide information regarding standards, item formats and response types. The descriptions of math blueprints and depth of knowledge in this document are meant to provide an overview of the test. Item specifications are meant for the purposes of assessment, not instruction. They are not intended to be tools for instruction or the basis for curricula. AzMERIT has a test blueprint that was developed by Arizona and is different from any other state or consortium test blueprint.

For the math portion of AzMERIT, all of the test questions are aligned to the mathematic content standards for these subject areas. Any item specifications that are absent for standards listed in this document may be under development. This document does not endorse the exclusion of the instruction of any grade-level content standards. The test will ask questions that check a student's conceptual understanding of math as well as their procedural skills. These items have been written to be free from bias and sensitivity, and widely vary in their degree of difficulty.

Item Development Process

AzMERIT items go through a rigorous review before they are operational. When an item is "operational" it means it is used to determine a student's score on the assessment. This is a description of the process every item must go through before it is operational on AzMERIT.

Item Development

AIR and ADE generate potential items for review.

Educator Review

Committee of Arizona Teachers review items for content and bias.
All approved items are moved forward.

Parent Review Committee

Arizona parents/community members review items for bias and sensitivity. All approved items move forward.

Field Test

Items are field tested to see how they operate.

Data Review

Field Test items are reviewed for data to ensure they are valid.

Operational

Field Test items which have made it through all stages are now potentially Operational.

Sample tests are available online for the math portion of AzMERIT. For more information view the Guide to the Sample Tests at www.azmeritportal.org.

Test Construction Guidelines

The construction of the AzMERIT assessment is guided by the depth and rigor of the Arizona College and Career Ready Standards. Items are created to address key components of the standards and assess a range of important skills. The AzMERIT Blueprint provides an overview of the distribution of items on the AzMERIT according to the standards. The standards for Math Practices are embedded within all AzMERIT items. Further, the AzMERIT blueprint outlines the Depth of Knowledge distribution of items.

Blueprint

Grade 8 AzMERIT Blueprint 2016 Standards		
Reporting Category	Min.	Max.
Functions	21%	25%
Expressions \& Equations	29%	33%
Geometry	17%	21%
Statistics \& Probability \& the Number System	19%	27%
Statistics and Probability	4%	8%
Number System	15%	19%

Depth of Knowledge (DOK)

DOK refers to the level of rigor or sophistication of the task in a given item, designed to reflect the complexity of the Arizona Mathematics Standards. Items at DOK level 1 focus on the recall of information, such as definitions, terms, and simple procedures. Items at DOK 2 require students to make decisions, solve problems, or recognize patterns; in general, they require a greater degree of engagement and cognitive processing than items at DOK 1. Items at DOK 3 feature higher-order cognitive tasks that assess students' capacities to approach abstract or complex problems.

Percentage of Points by Depth of Knowledge (DOK) Level			
Grade 8	DOK Level 1	DOK Level 2	DOK Level 3
	$10 \%-20 \%$	$60 \%-70 \%$	$12 \%-30 \%$

For more information on DOK go to www.azed.gov/AzMERIT.

Calculators

Arizona Desmos Scientific Calculator is permitted for the paper-based and computer-based assessment for Grade 8 Math.

Item Formats

The AzMERIT Assessments are composed of item formats that include traditional multiplechoice response items and technology-enhanced response items (TEI). TEls are computerdelivered response items that require students to interact with test content to select, construct, and/or support their responses. TEls are better able to assess a deeper level of understanding.

Currently, there are nine types of TEls that may appear on the Math computer based assessment for AzMERIT:

- Editing Tasks (ET)
- Editing Task Choice (ETC)
- Equation Editor (EQ)
- Graphic Response Item Display (GRID)
- Hot Text (HT)
- Selectable Hot Text
- Drag-and-Drop Hot Text
- Matching Item (MI)
- Multi-Select (MS)
- Open Response
- Table Item (TI)

For paper-based assessments (including those for students with an IEP or 504 plan that specifies a paper-based accommodation), TEls will be modified so that they can be scanned and scored electronically or hand-scored.

See the table below for a description of each TEI. In addition, for examples of each response item format described, see the AzMERIT Training Tests at www.azmeritportal.org.

Item Format	Description
Editing Task (ET)	The student clicks on a highlighted word or phrase that may be incorrect, which reveals a text box. The directions in the text box direct the student to replace the highlighted word or phrase with the correct word or phrase. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
Editing Task Choice (ETC)	The student clicks a highlighted word or phrase, which reveals a drop-down menu containing options for correcting an error as well as the highlighted word or phrase as it is shown in the sentence to indicate that no correction is needed. The student then selects the correct word or phrase from the drop-down menu. For paper- based assessments, the item is modified so that it can be scanned and scored electronically. The student fills in a circle to indicate the correct word or phrase.

Item Format	Description
Equation Editor (EQ)	The student is presented with a toolbar that includes a variety of mathematical symbols that can be used to create a response. Responses may be in the form of a number, variable, expression, or equation, as appropriate to the test item. For paper-based assessments, this item type may be replaced with a modified version of the item that can be scanned and scored electronically or replaced with another item type that assesses the same standard and can be scanned and scored electronically.
Graphic Response	The student selects numbers, words, phrases, or images and uses the drag-and- drop feature to place them into a graphic. This item type may also require the student to use the point, line, or arrow tools to create a response on a graph. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
Hot Text (HT)	Selectable Hot Text - Excerpted sentences from the text are presented in this item type. When the student hovers over certain words, phrases, or sentences, the options highlight. This indicates that the text is selectable ("hot"). The student can then click on an option to select it. For paper- based assesments, a selectable" hot text item is modified so that it can be scanned and scored electronically. In this version, the student fills in a circle to indicate a selection.
Open Response	Drag-and-Drop Hot Text - Certain numbers, words, phrases, or sentences may be designated "draggable" in this item type. When the student hovers over these areas, the text highlights. The student can then click on the option, hold down the mouse button, and drag it to a graphic or other format. For paper-based assessments, drag- and-drop hot text items will be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
Multi-Select (MS)	The student uses the keyboard to enter a response into a text field. These items can
The student is directed to select all of the correct answers from among a number	
of options. These items are different from multiple-choice items, which allow the	
student to select only one correct answer. These items appear in the online and	
paper-based assessments.	

Item Format	Description
Table Item (TI)	The student types numeric values into a given table. The student may complete the entire table or portions of the table depending on what is being asked. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.

Arizona Math Standards Grade 8

The Number System (NS)		
8.NS.A Understand that there are irrational numbers, and approximate them using rational numbers.	8.NS.A. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion. Know that numbers whose decimal expansions do not terminate in zeros or in a repeating sequence of fixed digits are called irrational.
	8.NS.A. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers. Locate them approximately on a number line diagram, and estimate their values.
	8.NS.A. 3	Understand that given any two distinct rational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$. Given any two distinct irrational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$.
Expressions and Equations (EE)		
8.EE.A Work with radicals and integer exponents.	8.EE.A. 1	Understand and apply the properties of integer exponents to generate equivalent numerical expressions.
	8.EE.A. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Know that $\sqrt{2}$ is irrational. a. Evaluate square roots of perfect squares less than or equal to 225 . b. Evaluate cube roots of perfect cubes less than or equal to 1000.
	8.EE.A. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and express how many times larger or smaller one is than the other.
	8.EE.A. 4	Perform operations with numbers expressed in scientific notation including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.
8.EE.B Understand the connections between proportional relationships, lines, and linear equations.	8.EE.B. 5	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
	8.EE.B. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane. Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at ($0, b$).
8.EE.C Analyze and solve linear equations, inequalities, and pairs of simultaneous linear equations.	8.EE.C. 7	Fluently solve linear equations and inequalities in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers). b. Solve linear equations and inequalities with rational number coefficients, including solutions that require expanding expressions using the distributive property and collecting like terms.
	8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations including cases of no solution and infinite number of solutions. Solve simple cases by inspection. c. Solve mathematical problems and problems in real-world context leading to two linear equations in two variables.
Functions (F)		
8.F.A Define, evaluate, and compare functions.	8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.)
	8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
	8.F.A. 3	Interpret the equation $y=m x+b$ as defining a linear function whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length in not linear because its graph contains the points $(1,1),(2,4)$, and $(3,9)$ which are not on a straight line.
8.F.B Use functions to model relationships between quantities.	8.F.B. 4	Given a description of a situation, generate a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or a graph. Track how the values of the two quantities change together. Interpret the rate of change and initial value of a linear function in terms of the situation it models, its graph, or its table of values.
	8.F.B. 5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Geometry (G)		
8.G.A Understand congruence and similarity.	8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.
	8.G.A. 2	Understand that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.
	8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
	8.G.A. 4	Understand that a two-dimensional figure is similar to another if, and only if, one can be obtained from the other by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that demonstrates similarity.
	8.G.A. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
8.G.B Understand and apply the Pythagorean Theorem.	8.G.B. 6	Understand the Pythagorean Theorem and its converse.
	8.G.B. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world context and mathematical problems in two and three dimensions.
	8.G.B.8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
8.G.C Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.	8.G.C. 9	Understand and use formulas for volumes of cones, cylinders and spheres and use them to solve real-world context and mathematical problems.

Statistics and Probability (SP)		
8.SP.A Investigate patterns of association in bivariate data.	8.SP.A.1	Construct and interpret scatter plots for bivariate measurement data to investigate and describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
	8.SP.A.2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
	8.SP.A.3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.
	8.SP.A.4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.
Investigate chance processes and develop, use, and evaluate probability models.	8.SP.B.5	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. a. Understand that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using organized lists, tables, tree diagrams and other methods. Identify the outcomes in the sample space which compose the event. c. Design and use a simulation to generate frequencies for compound events.

Grade 8 Math Item Specifications

Expressions and Equations

8.EE.A. 1

| Content
 Standards | Understand and apply the properties of integer exponents to generate equivalent
 numerical expressions. |
| :--- | :--- | :--- |
| Explanations | Work with radicals and integer exponents. |
| Content
 Limits | Integer exponents
 Rational numbers for bases |
| Context | Context is not allowed. |
| Sample Task Demands | |
| Students will be required to identify equivalent | |
| numerical expressions using the properties of | |
| exponents. | |

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Apply the properties of integer exponents to identify equivalent numerical expressions.	Apply the properties of integer exponents to generate equivalent numerical expressions.
Proficient	Highly Proficient
Understand and apply the properties of integer exponents to generate equivalent numerical expressions.	Understand and apply the properties of integer exponents to generate and interpret equivalent numerical expressions.

8.EE.A.2, 8.EE.A.2a, 8.EE.A.2b

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $\mathrm{x}^{3}=p$, where p is a positive rational number. Know that $\sqrt{ } 2$ is irrational.	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Know that $\sqrt{ } 2$ is irrational.
a. Identify square roots of perfect squares less than or equal to 100.	a. Identify square roots of perfect squares less than or equal to 225.
b. Identify cube roots of perfect cubes less than or equal to 500.	b. Identify cube roots of perfect cubes less than or equal to 1000.
Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Know that $\sqrt{ } 2$ is irrational.	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Know that V 2 irrational. is
a. Evaluate square roots of perfect squares less than	
or equal to 225.	a. Evaluate square roots less than or equal to 225.

8.EE.A. 3

| Content
 Standards | Use numbers expressed in the form of a single digit times an integer power of 10 to
 estimate very large or very small quantities, and express how many times larger or
 smaller one is than the other. |
| :--- | :--- | :--- |
| Explanations | Work with radicals and integer exponents. |
| Content
 Limits | Context is allowed. |
| Context | |
| Sample Task Demands | |
| Students will be required to convert between standard | |
| form and scientific notation. | |
| Students will be required to compare the magnitudes | |
| of different quantities given in scientific notation. | Common Item Formats |

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities.	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities.
Proficient	Highly Proficient
Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and express how many times larger or smaller one is than the other.	Use numbers expressed in the form of a single digit times an integer power of 10 to interpret very large or very small quantities, and express how many times larger or smaller one is than the other.

8.EE.A. 4

Content Standards	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.	
Explanations	Students can convert decimal forms to scientific notation and apply rules of exponents to simplify expressions. In working with calculators or spreadsheets, it is important that students recognize scientific notation. Students should recognize that the output of $2.45 \mathrm{E}+23$ is 2.45×1023 and $3.5 \mathrm{E}-4$ is $3.5 \times 10-4$. Students enter scientific notation using E or EE (scientific notation), * (multiplication), and ^ (exponent) symbols.	
Content Limits	For TD1, to distinguish from 8.EE.3, do not use single-digit leading terms	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to convert between standard form and scientific notation.		- Equation Response - Multiple Choice Response - Matching Item
Students will be required to perform operations with numbers expressed in scientific notation.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Perform operations with numbers expressed in scientific notation.	Perform operations with numbers expressed in scientific notation including problems where both decimal and scientific notation are used. Use scientific notation for measurements of very large or very small quantities.
Proficient	Highly Proficient
Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.	Perform operations with numbers expressed in scientific notation including problems where both decimal and scientific notation are used. Use scientific notation to interpret for measurements of very large or very small quantities.

8.EE.B. 5

Content Standards\quadGraph proportional relation Compare two different prop example, compare a distan which of two moving object	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
Explanations \quadUsing graphs of experiences supports understanding an are expected to both sketch	Using graphs of experiences that are familiar to students increases accessibility and supports understanding and interpretation of proportional relationship. Students are expected to both sketch and interpret graphs.
Content Rational numbers Limits y-intercept is zero	Rational numbers y-intercept is zero
Context ${ }^{\text {c }}$ Context is required.	Context is required.
Sample Task Demands	k Demands \quad Common Item Formats
Students will be required to calculate unit rate given a graph of a proportional relationship.	- Graphic Response - Multiple Choice Response - Multi-Select Response - Table Response
Students will be required to graph proportional relationships, including comparisons to other proportional relationships.	
Students will be required to compare two proportional relationships represented in two different ways.	
Students will be required to create a proportional relationship based on a comparison with another proportional relationship in a different representation.	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Graph proportional relationships.	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships.
Proficient	Highly Proficient
Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare and explain two different proportional relationships represented in different ways.

8.EE.B. 6

Content Standards	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane. Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at $(0, b)$.	
Explanations	Understand the connections between proportional relationships, lines, and linear equations.	
Content Limits	None	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to given two points on a line, determine other points on the line.		- Equation Response - Graphic Response - Multiple Choice Response
Students will be required to given three points on a line described abstractly, determine a parameter for a fourth point on the line.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient		
Use similar triangles to identify that the slope is the same between any two distinct points on a non- vertical line in the coordinate plane.	Use similar triangles to explain why the slope m is the same between any two distinct points on a non- vertical line in the coordinate plane. Use the equation $y=m x$ for a line through the origin and the equation y $=m x+b$ for a line intercepting the vertical axis at (0, $b)$.		
Proficient	Highly Proficient		
Use similar triangles to explain why the slope m is the			
same between any two distinct points on a non-			
vertical line in the coordinate plane. Derive the			
equation $y=m x$ for a line through the origin and the			
equation $y=m x+b$ for a line intercepting the vertical			
axis at $(0, b)$.			Use similar triangles to prove why the slope m is the
:---			
same between any two distinct points on a non-			
vertical line in the coordinate plane. Derive the			
equation $y=m x$ for a line through the origin and the			
equation $y=m x+b$ for a line intercepting the vertical			
axis at $(0, b)$.			

Content Standards\quad8.EE.C.7 Fluently solve line 8.EE.C.7a Give examples infinitely many solutions, or by successively transform equivalent equation of the different numbers).	8.EE.C. 7 Fluently solve linear equations and inequalities in one variable. 8.EE.C.7a Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers). 8.EE.C.7b Solve linear equations and inequalities with rational number coefficients, including solutions that require expanding expressions using the distributive property and collecting like terms.
As students transform line discover the equations can solutions. When the equation has on equation true as in $12-4 y$ -1. When the equation has in Explanations numbers as in $7 x+14=7$ cancel leaving $14=14$ or 0 the two sides of the equation for the substitution. When an equation has no the case when the two exp simplifying this equation, numbers that are not equa used for the substitution, the	As students transform linear equations in one variable into simpler forms, they discover the equations can have one solution, infinitely many solutions, or no solutions. When the equation has one solution, the variable has one value that makes the equation true as in $12-4 y=16$. The only value for y that makes this equation true is -1. When the equation has infinitely many solutions, the equation is true for all real numbers as in $7 x+14=7(x+2)$. As this equation is simplified, the variable terms cancel leaving $14=14$ or $0=0$. Since the expressions are equivalent, the value for the two sides of the equation will be the same regardless which real number is used for the substitution. When an equation has no solutions it is also called an inconsistent equation. This is the case when the two expressions are not equivalent as in $5 x-2=5(x+1)$. When simplifying this equation, students will find that the solution appears to be two numbers that are not equal or $-2=1$. In this case, regardless which real number is used for the substitution, the equation is not true and therefore has no solution.
Content Limits	Rational Numbers
Context ${ }^{\text {C\| }}$ Context is allowed.	Context is allowed.
Sample Task Demands	k Demands Common Item Formats
Students will be required to determine the number of solutions of an equation where no simplification is required. (a)	- Equation Response - Multiple Choice Response - Matching Item Response - Multi-Select Response
Students will be required to determine the number of solutions of an equation where simplification is required.	
Students will be required to find the solution of an equation. (b)	
Students will be required to construct an equation given parameters including the solution or number of solutions. (a)	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
$\begin{array}{l}\text { Fluently solve linear equations and inequalities in one } \\ \text { variable. }\end{array}$	$\begin{array}{l}\text { Fluently solve linear equations and inequalities in one } \\ \text { variable. }\end{array}$
$\begin{array}{l}\text { a. Identify linear equations in one variable with one } \\ \text { solution, infinitely many solutions, or no solution. }\end{array}$	$\begin{array}{l}\text { a. Give examples of linear equations in one variable } \\ \text { with one solution, infinitely many solutions, or no } \\ \text { solution. }\end{array}$
$\begin{array}{l}\text { b. Identify the solution to linear equations and } \\ \text { inequalities with rational number coefficients. }\end{array}$	$\begin{array}{l}\text { b. Solve linear equations and inequalities with rational } \\ \text { number coefficients. }\end{array}$
Proficient	Highly Proficient
$\begin{array}{l}\text { Fluently solve linear equations and inequalities in one } \\ \text { variable. }\end{array}$	$\begin{array}{l}\text { Fluently solve linear equations and inequalities in one } \\ \text { variable. }\end{array}$
$\begin{array}{l}\text { a. Give examples of linear equations in one variable } \\ \text { with one solution, infinitely many solutions, or no } \\ \text { solution. Show which of these possibilities is the case } \\ \text { by successively transforming the given equation into } \\ \text { simpler forms, until an equivalent equation of the } \\ \text { form } x=a, a=a, \text { or } a=b \text { results (where } a \text { and } b \text { are } \\ \text { different numbers). }\end{array}$	$\begin{array}{l}\text { a. Give examples of linear equations in one variable } \\ \text { with one solution, infinitely many solutions, or no } \\ \text { solution. Explain which of these possibilities is the case } \\ \text { by successively transforming the given equation into } \\ \text { simpler forms, until an equivalent equation of the } \\ \text { form } x=a, a=a, \text { or } a=b \text { results (where } a \text { and } b \text { are } \\ \text { different numbers). }\end{array}$
b. Solve linear equations and inequalities with rational	
number coefficients, including solutions that require	
expanding expressions using the distributive property	
and collecting like terms.	

inequalities with rational number coefficients,

including solutions that require expanding expressions

using the distributive property and collecting like

terms.\end{array}\right\}\)
8.EE.C.8, 8.EE.C.8a, 8.EE.C.8b, 8.EE.C.8c

Content Standards\quad8.EE.C.8 Analyze and solve 8.EE.C.8a Understand tha variables correspond to po intersection satisfy both eq	8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations. 8.EE.C.8a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. 8.EE.C.8b Solve systems of two linear equations in two variables algebraically and estimate solutions by graphing the equations including cases of no solution and infinite number of solutions. Solve simple cases by inspection. 8.EE.C.8c Solve mathematical problems and problems in real-world context leading to two linear equations in two variables.
Explanations $\left.\left.\quad \begin{array}{l}\text { Systems of linear equations } \\ \text { no solutions. Students wil } \\ \text { equations and solve them }\end{array}\right\} \begin{array}{l}\text { A system of linear equation } \\ \text { only one solution, the orde } \\ \text { of linear equations whose } \\ \text { the slopes of these lines ar } \\ \text { are coincident (the same lin } \\ \text { representing all the points }\end{array}\right\}$	Systems of linear equations can also have one solution, infinitely many solutions or no solutions. Students will discover these cases as they graph systems of linear equations and solve them algebraically. A system of linear equations whose graphs meet at one point (intersecting lines) has only one solution, the ordered pair representing the point of intersection. A system of linear equations whose graphs do not meet (parallel lines) has no solutions and the slopes of these lines are the same. A system of linear equations whose graphs are coincident (the same line) has infinitely many solutions, the set of ordered pairs representing all the points on the line. By making connections between algebraic and graphical solutions and the context of the system of linear equations, students are able to make sense of their solutions. Students need opportunities to work with equations and context that include whole number and/or decimals/fractions.
Content Rational Numbers Limits (8a) Should involve a graph	Rational Numbers (8a) Should involve a graph
Context \quad Context is subject to task de	Context is subject to task demand.
Sample Task Demands	k Demands Common Item Formats
Students will be required to identify the integer solution of a system from a graph. (a) Context is not allowed.	- Equation Response - Graphic Response - Multiple Choice Response - Matching Item Response - Multi-Select Response
Students will be required to identify the number of solutions of a system by inspection given the two equations. (b) Context is not allowed.	
Students will be required to solve a system of two equations. (b) Context is not allowed.	
Students will be required to graph a system of equations and select an interval in which the x-or y value of the solution lies. (b) Context is not allowed.	
Students will be required to solve a problem that can be modeled with a system of equations. (c) Context is required.	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Analyze and solve pairs of simultaneous linear equations. a. Identify the point of intersection for graphs of two linear equations in two variables. b. Identify solutions to simple systems of equations by inspection. c. Solve mathematical problems using two linear equations in two variables.	Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs. b. Estimate solutions to systems of two linear equations in two variables by graphing the equations, including cases of no solution and infinite number of solutions. Solve simple cases by inspection. c. Solve mathematical problems and problems in realworld context using two linear equations in two variables.
Proficient	Highly Proficient
Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations, including cases of no solution and infinite number of solutions. Solve simple cases by inspection. c. Solve mathematical problems and problems in realworld contexts leading to two linear equations in two variables.	Analyze and solve pairs of simultaneous linear equations. a. Explain that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and solve solutions by graphing the equations including cases of no solution and infinite number of solutions. Solve simple cases by inspection. c. Solve mathematical problems and problems in realworld context by creating two linear equations in two variables.

Standards for Functions

8.F.A. 1

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify a function rule that assigns to each input exactly one output. (Function notation is not required in Grade 8.)	Generate a function rule that assigns to each input exactly one output. Identify the graph of a function as the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.)
Proficient	Highly Proficient
Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.)	Explain that a function is a rule that assigns to each input exactly one output. Explain that the graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.)

8.F.A. 2

Content Standards	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	
Explanations	Define, evaluate, and compare functions.	
Content Limits	Function notation is not permitted Only linear functions Only two functions Examples of properties are rate of change, starting point (y-intercept), and values at specific inputs	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to identify correct statement(s) comparing properties of two functions presented using different representations.		- Multiple Choice Response
Students will be required to identify a linear function that has certain properties when compared with a given function.		- Matching Item Response

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify properties of two functions each represented in the same way (algebraically, graphically, numerically in tables, or by verbal descriptions).	Compare properties of two functions each represented in the same way (algebraically, graphically, numerically in tables, or by verbal descriptions).
Proficient	Highly Proficient
Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	Interpret properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

8.F.A. 3

Content Standards	Interpret the equation $y=m x+b$ as defining a linear function whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$, and $(3,9)$ which are not on a straight line.	
Explanations	Define, evaluate, and compare functions.	
Content Limits	Function notation is not permitted	
Context	Context is not allowed.	
Sample Task Demands		Common Item Form
Students will represented nonlinear.	to categorize functions or graphs as linear or	- Multiple Choice Response - Matching Item Response
Students will be required to categorize functions represented as tables as linear or nonlinear.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify a linear function whose graph is a straight line.	Interpret the equation $y=m x+b$ as defining a linear function whose graph is a straight line.
Proficient	Highly Proficient
Interpret the equation $y=m x+b$ as defining a linear function whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear, because its graph contains the points $(1,1),(2,4)$, and (3, 9), which are not on a straight line.	Interpret the equation $y=m x+b$ as defining a linear function whose graph is a straight line; give real-world examples of functions that are not linear.

8.F.B. 4

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Given a description of a situation, identify a function to model a linear relationship between two quantities.	Given a description of a situation, generate a function to model a linear relationship between two quantities. Identify the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or a graph.
Proficient	Highly Proficient
Given a description of a situation, generate a function to model a linear relationship between two quantities.	Given a description of a situation, generate a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y values, including reading these from a table or a graph. Track how the values of the two quantities change together. Interpret the rate of change and initial value of a linear function in terms of the situation it models, its graph, or its table of values.
function from a description of a relationship or from two (x, y) values, including reading these from a table or a graph. Interpret how the values of the two quantities change together. Interpret the rate of change and initial value of a linear function in terms of the situation it models, its graph, or its table of values.	

8.F.B. 5

Content Standards	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	
Explanations	Use functions to model relationships between quantities.	
Content Limits	Linear and/or nonlinear relationships Graph descriptions traditionally move from left to right Graphs may or may not refer to quantitative measures as well as qualitative, i.e. the axes of graphs may or may not have scales Types of qualitative descriptions can include increasing/decreasing, linear/nonlinear, constant/variable, comparing rates (faster/slower), initial values that depend on the context and axes label, etc.	
Context	Context is subject to task demand.	
Sample Task Demands		Common Item Form
Students will description giv description, w	to identify a qualitative a graph given a qualitative Context is not allowed.	- Graphic Response - Multiple Choice Response
Students will description giv description, w	to identify a qualitative a graph given a qualitative t. Context is allowed.	
Students will be required to construct the graph of a function that matches a given qualitative description. Context is required.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify a graph that exhibits the qualitative features of a function that has been described verbally.	Identify the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
Proficient	Highly Proficient
Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	Interpret the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Geometry

8.G.A. 1

Content Standards	Verify experimentally the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.	
Explanations	Students need multiple opportunities to explore the transformation of figures so that they can appreciate that points stay the same distance apart and lines stay at the same angle after they have been rotated, reflected, and/or translated. Students are not expected to work formally with properties of dilations until high school.	
Content Limits	The coordinate plane should not be used until 8.G.3. A pre-image and image should not include apostrophe-prime notation as this would give away the identification of similarity and congruence.	
Context	Context is not allowed.	
Sample Task Demands		Common Item Form
Students will be required to identify congruent properties based on a transformation(s).		- Equation Response
Students will be required to solve a problem based on comparing part of a given shape to the corresponding part of its transformation.		- Multiple Choice Response - Multi-Select Response

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.	(identify experimentally the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.
Proficient	Highly Proficient
Verify experimentally the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.	Prove the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.

8.G.A. 2

Content Standards	Understand that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.	
Explanations	Understand congruence and similarity.	
Content Limits	The coordinate plane should not be used until 8.G.3. Simply stating "dilation" is not sufficient for identifying a transformation that does not maintain congruence, since dilation by a factor of 1 does maintain congruence	
Context	Context is not allowed.	
Sample Task Demands		Common Item Form
Students will be required to identify a transformation or set of transformations that maintain congruence.		- Multiple Choice Response - Multi-Select Response - Proposition Response
Students will be required to describe a transformation given two congruent figures.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Given two congruent figures, identify a sequence that demonstrates congruence.	Understand that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, identify a sequence that demonstrates congruence.
Proficient	Highly Proficient
Understand that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.	Prove that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.

8.G.A. 3

Content Standards Describe the effect of dila dimensional figures using c	Describe the effect of dilations, translations, rotations, and reflections on twodimensional figures using coordinates.
Dilation: A dilation is a tran from a fixed center, and m factor. In dilated figures, th Translation: A translation is that every point of the ob distance. In a translation, the Explanations Reflection: A reflection is reflection (in a coordinate rotation, the rotated object When an object is reflecte opposite of the pre-image x Rotation: A rotated figure is called the center of rotation congruent to their pre-imag	Dilation: A dilation is a transformation that moves each point along a ray emanating from a fixed center, and multiplies distances from the center by a common scale factor. In dilated figures, the dilated figure is similar to its pre-image. Translation: A translation is a transformation of an object that moves the object so that every point of the object moves in the same direction as well as the same distance. In a translation, the translated object is congruent to its pre-image. Reflection: A reflection is a transformation that flips an object across a line of reflection (in a coordinate grid the line of reflection may be the x or y axis). In a rotation, the rotated object is congruent to its pre-image. When an object is reflected across the y axis, the reflected x coordinate is the opposite of the pre-image x coordinate. Rotation: A rotated figure is a figure that has been turned about a fixed point. This is called the center of rotation. A figure can be rotated up to 360°. Rotated figures are congruent to their pre-image figures.
Content Limit coordinates to integer Limits Limit rotations to about the Limit dilations to about the When a coordinate grid is giv given, should fit onto that c	Limit coordinates to integer values of x and y Limit rotations to about the origin Limit dilations to about the centers of shapes, or about the vertices of shapes When a coordinate grid is given, all original figures and transformations, given or not given, should fit onto that coordinate grid.
Context \quad Context is not allowed.	Context is not allowed.
Sample Task Demands	k Demands Common Item Formats
Students will be required to identify the coordinates of a figure after a given transformation.	identify the coordinates of ormation.
Students will be required to given a figure and transformation, draw the image or pre-image.	to given a figure and mage or pre-image. - Equation Response
Students will be required to identify the transformation that has occurred given an image and a pre-image or coordinates.	identify the transformation image and a pre-image or - Graphic Response - Multiple Choice Response - Table Response
Students will be required to given a point (x, y), use coordinate rules to show how that point changes after a transformation or transformations.	o given a point (x, y), use ow that point changes after rmations.

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify the effect of dilations, translations, rotations, and reflections on two-dimensional figures.	Identify the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
Proficient	Highly Proficient
Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Describe and interpret the effect of dilations, translations, rotations, and reflections on two- dimensional figures using coordinates.

8.G.A. 4

| Content
 Standards | Understand that a two-dimensional figure is similar to another if, and only if, one can
 be obtained from the other by a sequence of rotations, reflections, translations, and
 dilations; given two similar two-dimensional figures, describe a sequence that
 demonstrates similarity. |
| :--- | :--- | :--- |
| Explanations | Understand congruence and similarity. |
| Content
 Limits | Items should not include the coordinate plane as the coordinate plane is needed in
 8.G.3.
 Limited to polygons with up to 7 sides. |
| Context | Context is not allowed. |
| Students will be required to describe a transformation
 given two similar figures. | |

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Given two similar two-dimensional figures, identify a sequence that demonstrates similarity.	Understand that a two-dimensional figure is similar to another if, and only if, one can be obtained from the other by a sequence of rotations, reflections, translations, and dilations; given two similar two- dimensional figures, identify a sequence that demonstrates similarity.
Proficient	Highly Proficient
Understand that a two-dimensional figure is similar to another if, and only if, one can be obtained from the other by a sequence of rotations, reflections, translations, and dilations; given two similar two- dimensional figures, describe a sequence that demonstrates similarity.	Explain that a two-dimensional figure is similar to another if, and only if, one can be obtained from the other by a sequence of rotations, reflections, translations, and dilations; given two similar two- dimensional figures, describe a sequence that demonstrates similarity.

8.G.A. 5

Content Standards	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	
Explanations	Students can informally prove relationships with transversals. Students can informally conclude that the sum of a triangle is 180o (the angle-sum theorem) by applying their understanding of lines and alternate interior angles.	
Content Limits	Do not include shapes beyond triangles	
Context	Context is not allowed.	
Sample Task Demands		
Students will be required to use line-drawing tool to create angles of specified measure with respect to a given angle on a triangle.		
Students will be required to use the AA criteria for similar triangles.		
Students will be required to create expressions that represent relationships between angles.		
Students will be required to drag/arrange text options to complete an argument/reasoning about angle measures of a triangle.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Use facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	Identify facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
Proficient	Highly Proficient
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals explaining why this is so.	Prove arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

8.G.B. 6

Understand the Pythagorean Theorem and its converse.	
Explanations \quadStudents should verify, using to the square of the hypote that if the sum of the square of the third leg, then the tri	Students should verify, using a model, that the sum of the squares of the legs is equal to the square of the hypotenuse in a right triangle. Students should also understand that if the sum of the squares of the 2 smaller legs of a triangle is equal to the square of the third leg, then the triangle is a right triangle.
$\begin{array}{l}\text { Content } \\ \text { Limits }\end{array}$ For the converse, use only p	For the converse, use only perfect roots
Context \quad Context is not allowed.	Context is not allowed.
Sample Task Demands	Common Item Form
Students will be required to identify components of a sufficient/insufficient proof of the Pythagorean theorem.	- Graphic Response - HotText Response - Multiple Choice Response - Multi-Select Response - Proposition Response
Students will be required to explain or evaluate a proof of the Pythagorean theorem.	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify examples of the application of the converse of the Pythagorean Theorem.	Apply the converse of the Pythagorean Theorem.
Proficient	Highly Proficient
Understand the Pythagorean Theorem and its converse.	Prove the converse of the Pythagorean Theorem.

8.G.B. 7

Content Standards	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world context and mathematical problems in two and three dimensions.	
Explanations	Through authentic experiences and exploration, students should use the Pythagorean Theorem to solve problems. Problems can include working in both two and three dimensions. Students should be familiar with the common Pythagorean triplets.	
Content Limits	Given measures should be integers, though answers can be rational	
Context	Context is subject to task demand.	
Sample Task Demands		Common Item Form
Students will be required to find missing side lengths in a right triangle. Context is not allowed.		- Equation Response - Multiple Choice Response - Multi-Select Response
Students will be required to solve simple real-world problems using the Pythagorean theorem. Context is required.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Apply the Pythagorean Theorem to determine the hypotenuse in right triangles in real-world context and mathematical problems in two dimensions.	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world context and mathematical problems in two dimensions.
Proficient	Highly Proficient
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world contexts and mathematical problems in two and three dimensions.	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world context and mathematical problems in two and three dimensions and interpret the results.

8.G.B. 8

Content Standards	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	
Explanations	Understand and apply the Pythagorean Theorem.	
Content Limits	Points on the coordinate grid should be where grid lines intersect	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to determine the distance between two points on a coordinate grid.		- Equation Response - Graphic Response - Multiple Choice Response - Multi-Select Response

Minimally Proficient	
Use the Pythagorean Theorem to find the distance between two points in the first quadrant of a coordinate system. Use the Pythagorean Theorem to find the distance between two points in a coordinate system. Proficient Highly Proficient Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. Apply the Pythagorean Theorem to find the scaled distance between two points in a coordinate system.	

8.G.C. 9

Content Standards	Understand and use formulas for volumes of cones, cylinders and spheres and use them to solve real-world context and mathematical problems.	
Explanations	Solve real-world and mathematical problems involving volume of cylinders, cones and spheres.	
Content Limits	Graphics of three-dimensional figures will be included in most items Dimensions are rational numbers Items should not require students to solve quadratic or cubic equations (i.e., find r given a volume) Rubrics should account for different estimations of pi (3.14, 22/7, the calculator button) if necessary	
Context	Context is allowed.	
Sample Task Demands		Common Item Form
Students will be required to use formulas to determine the volume of a cylinder, cone, or sphere.		- Equation Response - Multiple Choice Response - Multi-Select Response
Students will be required to use formulas to determine the volume of composite objects composed of cylinders, cones, and/or spheres, or parts of these objects.		
Students will be required to compare the volumes/heights of cones and cylinders with the same base.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Apply formulas for volumes of cones, cylinders, and spheres.	Understand and use formulas for volumes of cones, cylinders, and spheres.
Proficient	Highly Proficient
Understand and use formulas for volumes of cones, cylinders, and spheres and use them to solve real- world context and mathematical problems.	Know and use formulas for volumes of cones, cylinders and spheres and use them to solve real-world context and mathematical problems.

Statistics and Probability \& The Number System

8.NS.A. 1

Content Standards	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion. Know that numbers whose decimal expansions do not terminate in zeros or in a repeating sequence of fixed digits are called irrational.	
Explanations	Students can use graphic organizers to show the relationship between the subsets of the real number system.	
Content Limits	All irrational numbers excluding e.	
Context	Context is not allowed.	
Sample Task Demands		Common Item Form
Students will be required to identify numbers that are irrational.		- Equation Response - Multiple Choice Response - Matching Item Response - Multi-Select Response - Proposition Response
Students will be required to convert a repeating decimal into a fraction.		
Students will be required to explain why a number is rational or irrational.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify irrational numbers.	Know that numbers that are not rational are called irrational. Identify a decimal expansion of irrational number.
Proficient	Highly Proficient
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion. Know that numbers whose decimal expansions do not terminate in zeros or in a repeating sequence of fixed digits are called irrational.	Explain that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion. Explain that numbers whose decimal expansions do not terminate in zeros or in a repeating sequence of fixed digits are called irrational.

8.NS.A. 2

Content Standards	Use rational approximations of irrational numbers to compare the size of irrational numbers. Locate them approximately on a number line diagram, and estimate their values.	
Explanations	Students can approximate square roots by iterative processes.	
Content Limits	All real numbers excluding e. Irrational expressions should only use one operation	
Context	Context is not allowed.	
Sample Task Demands		Common Item Form
Students will be required to identify the approximated value of an irrational number.		- Equation Response - Graphic Response - Multiple Choice Response - Multi-Select Response
Students will be required to estimate values of expressions that include irrational values.		
Students will be required to plot irrational numbers on a number line.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Approximate irrational numbers on a number line diagram.	Use rational approximations of irrational numbers to compare the size of irrational numbers. Locate them approximately on a number line diagram.
Proficient	Highly Proficient
Use rational approximations of irrational numbers to compare the size of irrational numbers. Locate them approximately on a number line diagram, and estimate their values.	Use rational approximations of irrational numbers to compare the size of irrational numbers. Locate them approximately on a number line diagram, and calculate their values.

8.NS.A. 3

Content Standards	Understand that given any two distinct rational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$. Given any two distinct irrational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$.	
Explanations	Understand that there are irrational numbers, and approximate them using rational numbers.	
Content Limits		
Context	No Context	
Sample Task Demands		Common Item Form
Students will be required to recognize that there are rational and irrational numbers is between two rational or irrational numbers.		- Multiple Choice Response - Equation Response - Editing Task Choice
Students will be required to identify a rational or irrational number that has a value between two rational or irrational numbers.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Understand that given any two distinct rational numbers, $a<b$, identify a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$.	Understand that given any two distinct rational numbers, $a<b$, identify a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$. Given any two distinct irrational numbers, $a<b$, identify a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$.
Proficient	Highly Proficient
Understand that given any two distinct rational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$. Given any two distinct irrational numbers, $a<b$, there exists a rational number c and an irrational number d, such that $a<c<b$ and $a<d<b$.	Explain that given any two distinct rational numbers, a $<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$. Given any two distinct irrational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$.

8.SP.A. 1

Content Standards Construct and interpret sca and describe patterns such linear association, and nonl Stent	Construct and interpret scatter plots for bivariate measurement data to investigate and describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Explanations \quadStudents build on their pre between variables. They a associations, the degree of outliers to determine if measurement error.	Students build on their previous knowledge of scatter plots examine relationships between variables. They analyze scatterplots to determine positive and negative associations, the degree of association, and type of association. Students examine outliers to determine if data points are valid or represent a recording or measurement error.
Content Items at this standard shou values of data represented Limits statistics standards, when t should focus more on recog	Items at this standard should not require the student to perform calculations using values of data represented on a scatter plot. This will be reserved for High School statistics standards, when the appropriate technology is available. This standard should focus more on recognizing patterns of association.
Context ${ }^{\text {Context is allowed. }}$	Context is allowed.
Sample Task Demands	k Demands Common Item Formats
Students will be required to identify patterns of association (clusters, outliers, positive/negative association, linear/nonlinear association) for a scatter plot.	- Graphic Response - Multiple Choice Response - Multi-Select Response
Students will be required to interpret patterns of association found in scatter plots in terms of a given context.	
Students will be required to construct a scatter plot using given data points and interpret patterns therein.	
Students will be required to construct scatter plots given a verbal description of the association.	

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Construct scatter plots for bivariate measurement data.	Construct scatter plots for bivariate measurement data to investigate and describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
Proficient	Highly Proficient
Construct and interpret scatter plots for bivariate measurement data to investigate and describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	Construct and interpret scatter plots for bivariate measurement data to investigate and interpret patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

8.SP.A. 2

Performance Level Descriptors

Minimally Proficient	Partially Proficient
For scatter plots that suggest a linear association, informally fit a straight line.	Identify straight lines used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
Proficient	Highly Proficient
Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

8.SP.A. 3

Content Standards	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	
Explanations	Investigate patterns of association in bivariate data.	
Content Limits	Rational numbers Limit to linear equations Students should not be required to create an equation of a line of best fit; if a scatterplot/line of best fit is given, the parameter(s) of interest should also be given.	
Context	Context is required.	
Sample Task Demands		Common Item Form
Students will be required to interpret the slope and intercept of a line of best fit, with slope and/or intercept parameter identified, in terms of the context.		- Equation Response - Multiple Choice Response - Multi-Select Response
Students will intercept of context.	o interpret the slope and quation in terms of the	
Students will be required to solve problems about the slope and intercept of a line of best fit in terms of the context.		

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Identify properties of the equation of a linear model to solve problems in the context of bivariate measurement data.	Use the equation of a linear model to solve problems in the context of bivariate measurement data, identifying the slope and intercept.
Proficient	Highly Proficient
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	Create an equation for a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.

8.SP.A. 4

| Content
 Standards | Understand that patterns of association can also be seen in bivariate categorical data
 by displaying frequencies and relative frequencies in a two-way table. Construct and
 interpret a two-way table summarizing data on two categorical variables collected
 from the same subjects. Use relative frequencies calculated for rows or columns to
 describe possible association between the two variables. |
| :--- | :--- | :--- |
| Explanations | Investigate patterns of association in bivariate data. |

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Construct a two-way table summarizing data on two categorical variables collected from the same subjects.	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects.
Proficient	Highly Proficient
Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.	Explain patterns of association seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.

8.SP.B.5, 8.SP.B.5a, 8.SP.B.5b, 8.SP.B.5c

8.SP.B.5 Find probabiliti tree diagrams, and simul Content Standards 8.SP.B.5a Understand th of outcomes in the samp 8.SP.B.5b Represent sam tables, tree diagrams and space which compose th 8.SP.B.5c Design and use events.	8.SP.B. 5 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. 8.SP.B.5a Understand that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. 8.SP.B.5b Represent sample spaces for compound events using organized lists, tables, tree diagrams and other methods. Identify the outcomes in the sample space which compose the event. 8.SP.B.5c Design and use a simulation to generate frequencies for compound events.
Explanations \quad Investigate chance processe	Investigate chance processes and develop, use, and evaluate probability models.
Content Limits	
Context \quad Context is allowed.	Context is allowed.
Sample Task Demands	Demands Common Item Formats
Identify the sample space for a compound event given an experimental design or a context.	a compound event given an ext. - Equation Response
Determine the probability of a compound event.	a compound event. - Multiple Choice Response
Use simulations to determine the probability of compound events.	mine the probability of • Table Response

Performance Level Descriptors

Minimally Proficient	Partially Proficient
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
a. Identify the probability of a compound event. b. Identify sample spaces for compound events using organized lists, tables, tree diagrams and other methods. c. Use a simulation to identify frequencies for compound events.	a. Identify the probability of a compound event as the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using organized lists, tables, tree diagrams, and other methods. c. Use a simulation to generate frequencies for
compound events.	

