6th Grade Arizona Mathematics Standards

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review-Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6 th Grade Mathematics Standards					
Ratio and Proportion (RP)			Carlson -These standards are coherent and logical. Abercrombie-These standards are clear, measurable, and developmentally appropriate. The inclusion of the limits in standard 7.RP.A. 3 are appropriate and useful. No suggestions for refinements were identified. The standards are written so that they will be unambiguously interpreted across the state. Milner-The fundamental concepts are introduced in the wrong order. Rates need to be defined AFTER proportional relationships. This fact becomes crystal clear in 7.RP.A.2b	Reason for no change (Milner comment) The 6-7 Ratios and Proportional Relationships progression (2011) document states, "Rates are at the heart of understanding the structure ... providing a foundation for learning about proportional relationships in seventh grade." (pg. 5). Support documents will assist in providing educators with guidance in relationship to the scope and sequence of proprotional realtionships and rate introduction.	
6.RP.A	Understand ratio concepts and use ratio reasoning to solve problems.				
6.RP.A. 1	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.	Possible re-wording "Understand the concept of a ratio and use RELEVANT language to describe a ratio-relationship between two quantities. **I think the deletion of the example is appropriate and allows for flexibility in instruction.	Carlson-6. RP.A.1: "Understand the concept of a ratio..." What do you want them to understand? If you aren't explicit, then you fail your question G: there are no clear expectations that will be broadly interpreted in the same way across schools. There is a lot of research about productive meanings for ratio in the literature, so there is no reason not to be explicit here. Milner-6.RP.A. 1 needs to be placed in a real-world context. Otherwise ANY two numbers a and b are "in a ratio relationship", namely a:b. Milgram-I have no idea what "ratio language" might mean. Ratios are actually very subtle objects and were first developed and explained by Euclid himself in his famous book V. Sad to say, very, very few teachers (and possibly even fewer "math educators") have any idea of what goes on with them or how they are defined. In particular, they are NOT numbers, though in special cases, they can be represented by quotients.	Based on Carlson, Milner, Milgram's comments and cited research, edits were made. Additional examples for this standard will be included in a supporting document. Lamon's Teaching Fractions and Ratios for Understanding (3rd ed.) states, "Often ratio language is used as an alternate way of expressing a multiplicative relationship. For example, there were $2 / 3$ as many men as women at the concert." NCTM's Developing Essential Understanding of Ratios, Proportionals and Proportional Reasoning states "A ratio is a multiplicative comparison of two quantities, or it is a joining of two quantities in a composed unit. There are two ways to form a ratio, both of which involve coordinating two quantities. One way is by comparing two quantities multiplicatively. The second way is by joining or composing the two quantities in a way that preserves a multiplicative relationship.	Understand the concept of a ratio as comparing two quantities multiplicatively or joining/composing the two quantities in a way that preserves a multiplicative relationship and use ratio language to describe a ratio relationship between two quantities. For example, "There were $2 / 3$ as many men as women at the concert.
6.RP.A. 2	Understand the concept of a unit rate a / b associated with a ratio a:b with $\mathrm{b} \neq 0$, and use rate language in the context of ratio relationship. (Complex fraction notation is not an expectation for unit rates in this grade level.) expectation for unit rates in this grade level.)	The clarification of the expectations for complex vs. noncomplex fractions is helpful. I think the deletion of the example is appropriate and allows for flexibility in instruction.	Milner-In 6.RP.A. 2 the concept of unit rate is not introduced properly. The essential component, two co-varying quantities, is missing. The examples suggest this but were removed and, moreover, this needs to be explicity included rather than suggested. In the first deleted example, the numbers of cups of sugar and cups of flour are related variables/quantities (linearly, in fact), and those numbers are related by the latter being equal to the former multiplied by the unit rate of flour-to-sugar. Rate cannot be defined for just two numbers; it requires two co-varying quantities (in a proportional relationship at this stage). Milgram-See my comments on standard 6.RP.A. 1 above. Here, I also have no idea what "rate language" might mean. I would also strongly urge putting the example in the original 6 .RP.A. 2 back. Finally, it seems to me that the people modifying this standard didn't really understand what the original $(\mathrm{a} / \mathrm{b}) /(\mathrm{c} / \mathrm{d})$, as distinguished from fractions of the form a / b (where $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are non-zero whole numbers). It might be worth noting that the reason I did not ask that the examples in 6. RP.A. 1 be restored is that the second example is not correct.	Based on Carlson, Milner, Milgram's comments and cited research, edits were made. Examples for this standard will be included in a supporting document. The 6-7 Ratios and Proportional Relationships progression (2011) document states, "It is important for students to focus on each of the terms "for every," "for each," "for each 1," and "per" because these equivalent ways of stating ratios and rates are at the heart of understanding the structure ..."	Understand the concept of a unit rate a / b associated with a ratio $\mathrm{a}: \mathrm{b}$ with $\mathrm{b} \neq 0$, and use rate language (e.g. for every, for each, for each 1, per) in the context of a ratio relationship. (Complex fraction notation is not an expectation for unit rates in this grade level.)

6th Grade Arizona Mathematics Standards

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6.RP.A. 3	Use ratio and rate reasoning to solve mathematical problems and problems in a real-world context. a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b. Solve unit rate problems including those involving unit pricing and constant speed. c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent. d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	Wording change helps with clarification. **The rewording of "solve mathematical problems and problems in a real-world context" creates consistency across grade levels and allows for flexibility in instruction **Clear, concise and to the point. I support this adoption	Achieve-AZ removed the reference to data collected from measurements. Milgram-Let me repeat that the terms "ratio reasoning" and "rate reasoning" have no meaning what-so-ever in actual mathematics. I wish this document did not use them	Based on Achieve's comment, edits were made to include reference to data collected from measurements.	Use ratio and rate reasoning to solve mathematical problems and problems in a real-world context (e.g., by reasoning about data collected from measurements, tables of equivalent ratios, tape diagrams, double number line diagrams, or equations). a. Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b. Solve unit rate problems including those involving unit pricing and constant speed. c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent. d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.
The Number Sys			Carlson -These standards are coherent and logical. Abercrombie-These standards are clear, measurable, and contain sufficient breadth and depth. The vertical alignment of these standards is excellent, and the refinements made to the standards are useful. The standards are written so that they will be unambiguously interpreted across the state.		
6.NS.A	Apply and extend previous understanding of multiplication and division to divide fractions by fractions.				Apply and extend previous understanding of multiplication and division to divide fractions by fractions.
6.NS.A. 1			Achieve-Removing the "e.g." in this CCSS gives the impression that only visual models and equations are required. AZ removed the CCSS specific example but kept the general one.	Based on Achieve's comment, an edit was made to include a specific example.	Interpret and compute quotients of fractions to solve mathematical problems and problems in real-world context involving division of fractions by fractions using visual fraction models and equations to represent the problem. For example, create a story context for $2 / 3 \div$ 3/4 and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that 2/3 \div $3 / 4=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. In general, $a / b \div c / d=a d / b c$.
6.NS.B	Compute fluently with multi-digit numbers and find common factors and multiples.				Compute fluently with multi-digit numbers and find common factors and multiples.
6.NS.B. 2	Fluently divide multi-idigit numbers using a standard algorithm.	The language "a standard algorithm" allows for choice in instruction and is appropriate. **There is a disconnect between k-5 and 6-8 standards. In 5th grade, they don't have to use the standard algorithm and then in 6th grade they are expected to fluently apply the standard algorithm Where do we teach the standard algorithm? **There are many different algorithms...but only one STANDARD algorithm. **Clear, concise and to the point. I support this adoption	Achieve-AZ changed "the" to "a," implying that there may be multiple standard algorithms. Milgram-what I would strongly suggest is that somebody talk to a younger person who was educated in China, and had their standard course in algorithms in lower high school. (It is a standard course and all Chinese students are expected to take it.)	An algorithm is defined as "a set of instructions/steps used to solve a problem or obtain a desired result in every case". No action required.	

6th Grade Arizona Mathematics Standards

Coding	Dratt Plus standards - as of 8/2016	Public Comment-Fall 2016	Technical Review- Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6.NS.B. 3	Fluently add, subtract, multiply, and divide multi-digit decimals using a standard algorithm for each operation.	The phrase "a standard algorithm" allows for flexibility and choice and is appropriate. ${ }^{* *}$ Clear, concise and to the point. I support this adoption	Achieve-AZ changed "the" to "a," implying that there may be multiple standard algorithms. Milgram-Be careful here. It should be understood that there does not exist any algorithm, let alone a "standard one" for doing these operations with infinite decimals, except for very special cases, for example where the infinite decimal is ultimately repeating.	No action required.	
6.NS.B. 4	Understand the greatest common factor, understand the least common multiple, and use the distributive property. a. Find the greatest common factor of two whole numbers less than or equal to 100 . b. Find the least tom less than or equal to to 12 . c. Usiple of two the whole numbers whole numbers 1 -1ve property to express a sum of two a sum of two whole numbers with no factor as a multiple of a factor.	The changes to this standard create clarity and provide a clear outline of each piece of the standard.		Based on comments from Achieve, Milgram and Milner, edits have been made. Support documents will address justification of why the LCM and GCF exist for any finite set of positive integers.	Use previous understands of factors to find the greatest common factor and the least common multiple. and use the distributive property. a. Find the greatest common factor of two whole numbers less than or equal to 100 . b. Find the least common multiple of two whole numbers less than or equal to 12 . c. Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as 4(9+2).
6.Ns.C	Apply and extend previous understandings of numbers to the system of rational numbers.		Milner-6.NS.C. 9 should not be removed!!! Students have no clue about the meaning of the symbol "\%" (i.e. " $\%=1 / 100$ "). It could be reworded "Understand that fractions, decimals, and percents are three different ways of representing numbers, and fluently convert from one way to another." 7.NS.A. 2 contains conversion of fraction to decimal.	No change needed. Percents are addressed in 6.P. 3 C	Apply and extend previous understanding of numbers to the system of rational numbers.
6.NS.C.	Understand that positive and negative numbers are used together ot describe uanatities anivg opposite diretions or values. Use possitive and negative numbers to epresent quanatites in real-world context, explaiaining the meaning of 0 in each situation.	eletion of the example is appropriate.	Wurman-The examples were helpful and there is no need to remove them. Milner-6.NS.C. 5 should not contain the word "directions" because the standards do not ever mention or define the direction of a number.	Based on Wurman's comment, the examples will be included in a supporting document.	
6.NS.C. 6	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar the plane with negative number coordinates. a. Recognize opposite signs of numbers as indicating ocations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself and that 0 is its own opposite b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	The deletion of the example is appropriate.	Milgram-A rational number IS NOT a point on the number line. It is a number. Probably what the author really meant to say is something like "represent a rational number as a point on the number line," and give an example such as representing 6/11 Milner-6.NS.C.6c should not mention integers separately because at this grade level students already know that integers are rational numbers.	Based on Milgram and Milner's comments, edits were made.	Understand a rational number can be represented as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself and that 0 is its own opposite. b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. c. Find and position integers and positive rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

6th Grade Arizona Mathematics Standards

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review-Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6.NS.C. 7	Understand ordering and absolute value of rational numbers a. Interpret statements of inequality as statements about the relative position of two numbers on a number line. b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in real-world contexts. d. Distinguish comparisons of absolute value from	The changes made to this standard are appropriate and provide clarification and flexibility.	Achieve-part d:The word "especially" in a standard is awkward. If the intent is that students be able to work with the comparisons both in and out of context, it should be clearly stated.	Based on Achieve's comments, edits were made.	Understand ordering and absolute value of rational numbers. a. Interpret statements of inequality as statements about the relative position of two numbers on a number line. b. Write, interpret, and explain statements of order for rational numbers in real-world context. c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in real-world context. d. Distinguish comparisons of absolute value from statements about order in mathematical problems and problems in real-world context.
6.Ns.	Solve mathematical problems and problems in real-world context by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	The change in wording is appropriate. **Real world application with 4 quadrants is impossible because no one really uses 4 quadrants.		No revision necessary	
Expressions and	((EE)		Carlson-In the high school standards (at least the current ones) it explicitly discusses evaluating as linked to using an input value to determine the corresponding output value, and solving an equation as using an output value to determine the corresponding input value. I argue that this way of thinking and terminology should be used in grades $6-8$ as appropriate both because they are extremely powerful ways to think about the processes by also because it opens up multiple solution paths and methods for checking the reasonableness of solutions. Abercrombie-In terms of developmental appropriateness, the 6 th grade standards in this domain are likely to be quite challenging for 6th graders since students at this age are just beginning to be able to think representationally and abstractly, requirements for understanding algebraic expression and equation. Providing some limit to the complexity of the algebraic expressions would make these standards more developmentally appropriate, such as limiting the number of variables in an expression, or the types of operations included in the expressions. That said, the standards are written clearly and are measurable, and interpretation of these standards		
6.EE.A	Apply and extend previous understanding of arithmetic to algebraic expressions.			Apply and extend previous understanding of arithmetic to algebraic expressions.	
6.EE.A. 1	Write and evaluate numerical expressions involving wholenumber exponents.	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. **No change is appropriate. **I support the adoption of this standard.	Milgram-As stated this standard is too general. Examples are needed to limit it.	This standard builds on and supports 5.OA.A. 1 1- Use parentheses and brackets in numerical expressions, evaluate expressions with these symbols (Order of Operations).as wells as 5.OA.A. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them (e.g., express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product). This standard also builds a foundation for 7.EE.B. 4 Use variables to represent quantities in mathematical problems and problems in a real-world context and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalites of the form $p x+q>r$ or $p x+q<r$, where p, q and r are specific rational	

6th Grade Arizona Mathematics Standards

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6.EE.A. 2	Write, read, and evaluate algebraic expressions. a. Write expressions that record operations with numbers and variables. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, and coefficient); view one or more parts of an expression as a single entity. c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used to solve mathematical problems and problems in a real-world context. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. **The changes are appropriate. **I support the adoption of this standard.	Wurman-Actually, where part (a) says "letters standing for numbers" is not equivalent to "variables."		Write, read, and evaluate algebraic expressions. a. Write expressions that record operations with numbers and variables. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, and coefficient); view one or more parts of an expression as a single entity. c. Evaluate expressions given specific values of their variables. Include expressions that arise from formulas used to solve mathematical problems and problems in real-world context. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).
6.EE.A. 3	Apply the properties of operations to generate equivalent expressions.	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. This is no change from the common core idea that Diane Douglas has been so strongly against. This is a ruse. **The deletion of the example is appropriate. **Which properites, please be specific **I am in support of this adoption	Wurman-The examples are helpful to clarify the scope of the standard and should be left in. Milgram-What is the meaning here of "equivalent expressions?" There is no universally understood mathematical concept for equivalent expressions. Generally, in the context of the Common Core standards, what we meant was that two expressions are equivalent if they involve the same objects (or variables) and when evaluated on each of these objects give the same value, Since this is not "standard" it needs to be written down somewhere in this document.		
6.EE.A.4	Identify when two expressions are equivalent.	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. **The deletion of the example is appropriate **I support the adoption of this standard.	Wurman-"Algebraic expressions are equivalent"? Milgram-See the comments for 6.EE.A. 3 above.		
6.EE.B	Reason about and solve one-variable equations and inequalities.				

6th Grade Arizona Mathematics Standards

Coding	Draft Plus standards - as of $8 / 2016$	Public Comment- Fall 2016	Technical Review-Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6.EE. \mathbf{B}. 5	Understand solving an equation or inequality as a process of reasoning to find the value(s) which make that equation or inequality true. Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	The change in wording clarifies the standard, and the deletion of the example is appropriate. **I support the adoption of this standard.	Achieve-AZ uses a slightly different choice of wording but the meaning is the same and may improve clarity de an effort to frame solving an equation in a manner accessible to a beginner. The rewrite uses mathematical jargon. Milgram-I am concerned about the phrase "as a process of reasoning." An arbitrary reasoning process has no expectation of being successtul in finding the values that make the expression true. Much better would be simply "Understand solving an equation or inequality as finding the values of the variables that make the equation or inequality true."	Based on technical review, edits were made.	Understand solving an equation or inequality as a process of reasoning to find the value(s) of the variables that which make that equation or inequality true. Use substitution to determine whether a given number in a specified set makes an equation or inequality true
6.EE. . 6	Use variables to represent numbers and write expressions to solve mathematical problems and problems in a real-world context; understand that a variable can represent an unknown number or any number in a specified set.	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. **Change in wording appropriate. **I support the adoption of this standard.		The workgroup determined no edits were needed.	Use variables to represent numbers and write expressions to solve mathematical problems and problems in a-real-world context; understand that a variable can represent an unknown number or any number in a specified set.
6.EE.B. 7	Solve mathematical problems and problems in a real-world context by writing and solving equations of the form $\mathrm{x}+\mathrm{p}=$ $q, x-p=q, p x=q$, and $p / x=q$ for cases in which p, q and x are all non-negative rational numbers.	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. **The addition of wording provides clarification and is appropriate. **I support the adoption of this standard.	Achieve-AZ added two variations on the CCSS equations. However, $\mathrm{p} / \mathrm{x}=\mathrm{q}$ would not be appropriate at this level since students have not been introduced to rational expressions. It is likely that this is a typo and it should be $\mathrm{x} / \mathrm{p}=\mathrm{q}$. Indiana, as referenced in the technical notes, includes $\mathrm{x} / \mathrm{p}=\mathrm{q}$ but not $\mathrm{p} / \mathrm{x}=\mathrm{q}$ in their standard 6.AF.5. Milgram-Reasonable standard Milner-In the proposed 6.EE.B.7, $\mathrm{p} / \mathrm{x}=\mathrm{q}$ should rather be $\mathrm{x} / \mathrm{p}=\mathrm{q}$ since this standard is about linear equations.	Based on the feedback from Achieve and Milner, this was changed to make it mathematically correct. Changed from p / x to x / p	Solve mathematical problems and problems in a real-world context by writing and solving equations of the form $x+p=q, x-p=q, p x=$ q, and $p / x \mathrm{x} / p=q$ for cases in which p, q and x are all non-negative rational numbers.
6.EE. \mathbf{B}.	Write an inequality of the form $x>c, x<c, x \geq c$, or $x \leq c$ to represent a constraint or condition to solve mathematical problems and problems in a real-world context. Recognize that inequalities have infinitely many solutions; represent solutions of such inequalities on number line	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. **The addition of greater than or equal to and less than or equal to is appropriate for the grade level. **I support the adoption of this standard.	Milner-In the proposed 6.EE.B.8, the last words "on number line" should either be "on number lines" or "on a number line."	Based on Miliner's comment, edits were made.	Write an inequality of the form $x>c, x<c, x \geq c$, or $x \leq c$ to represent a constraint or condition to solve mathematical problems and problems in a real-world context. Recognize that inequalities have infinitely many solutions; represent solutions of such inequalities on number lines
6.EE.C	Represent and analyze quantitative relationships between dependent and independent variables.				
6.EE.C.9	Use variables to represent two quantities to solve mathematical problems and problems in a real-world context that change in relationship to one another; write an equation to express one quantity (the dependent variable) in terms of the other quantity (the independent variable). Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.	This standard is developmentally inappropriate for 6th graders as many do not have the basic math skills to go from the concrete to the abstract. We Need to eliminate this and all standards in expressions and equations. ** the change in wording and deletion of the examples is appropriate. **I support the adoption of this standard.	Wurman-Again, the original language was careful to embed a clear definition of the terms in the standard, while the rewrite uses plain mathematical jargon without scaffolding proper definitions. The original seems better. Milner-In the proposed 6.EE.C.9, the wording is in an incorrect semantic order, it should read "Use variables to represent two quantities that change in relationship to one another to solve mathematical problems and problems in a real-world context.	ased on technical review, edits were made.	Use variables to represent two quantities to solve mathematical problems and problems in a real world context that change in relationship to one another to solve mathematical problems and problems in real-world context; write an equation to express one quantity (the dependent variable) in terms of the other quantity (the independent variable). Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
Geometry (G)			Abercrombie-In general, the standards are measurable, clear, contain breadth and depth, and are developmentally appropriate. The vertical and horizontal alignment is clear. The focus on real-world application is a strength.		

6th Grade Arizona Mathematics Standards

Coding	ft Plus Standards - as of 8/2016	ic Comment- Fall 2016	hnical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6.G.A	Solve real-world and mathematical problems involving area, surface area, and volume				Solve realworld and-mathematical problems and problems in realworld context involving area, surface area, and volume
6.G.A. 1	Find the area of polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques to solve mathematical problems and problems in a real-world context	What other shapes, be specific **। like this standard. However, its inclusion of decomposing a polygon into triangles and rectangles contradicts the manner in which the criteria was applied to earlier standards, specifically 3.MD.C.7. I like the inclusion of the decomposition here, and think that it should be added back in 3.MD.C.7.d. **OK as is. **\| support the adoption of this standard.	Achieve-The CCSS provides more detail about some of the specific polygons required. Unfortunately, the AZ modification, appparitical area 5 of the front matter in the Grade 6 standards. The CCSS provides more detail about some of the specific polygons required. Unfortunately, the AZ modification, apparently meant to remove redundancy, loses the parallel language found in critical area 5 of the front matter in the Grade 6 standards. Perhaps it would be clearer and more consistent to say, "Find the area of polygons by composing into rectangles or decomposing into triangles and other polygons." (This would match the sort of clarification made in 7.NS.A.1.) A teacher looking to see where areas of triangles are addressed in the progression may not see this modification as encompassing that notion. Milgram-Far too vague. There must be examples to clarify what is expected here. First, is it obvious that every polygon can be decomposed into rectangles? I don't believe this for a moment. (In fact it is very easy to construct counter-examples unless you allow infinite decompositions. But it would be idiotic to be discussing limits in sixth grade.)	Based on Achieve and Milgram's comments, edits were made. Edit made to remove "a" from "in a real world context".	Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques to solve mathematical problems and problems in a real-world context.
6.G.A.2		To avoid directing instructional techniques, this should read, "Find the volume of a right rectangular prism with fractional sid lengths." the "...by packing it with unit cubes.." gets into the "how" which should be left to the teacher/school/school district. **Where do we find fractional unit cubes to place in these boxes you are referring to	Milgram-Somewhat imprecise and disorganized, but this can be made into a solid standard.	The "...by packing it with unit cubes..." in the standard is not an instructional/curricular directive but rather indicates how to build the understanding conceptually to support the learning progression. Edit made to remove "a" from "in a real world context".	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formula $V=B \cdot h$, where in this case, B is the area of the base $(B=I \times w)$ to find volumes of right rectangular prisms with fractional edge lengths in mathematical problems and problems in real-world context.
6.G.A. 3	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques to solve mathematical problems and problems in a real-world context.	I support this adoption.		Edit made to remove "a" from "in a real world context".	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques to solve mathematical problems and problems in $\boldsymbol{\rightarrow}$ real-world context.
6.G.A.4.	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques to solve mathematical problems and problems in a real-world context.	Surface is an extremely hard concept for 6th graders. To have to apply it would send them over the edge or do algebra with would be tramatic **I support the adoption of this standard.		Edit made to remove "a" from "in a real world context".	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques to solve mathematical problems and problems in a real-world context.
Statistics and Prob			Abercrombie-The standards in this domain are very well written - they are clear, measurable, demonstrate a logical progression of knowledge in terms of breadth and depth, and are easily interpreted. Moving 8.SP.B. 1 from 7th grade to 8th grade enhances the knowledge progression across grades. The standards are developmentally appropriate.		
6.SP.A	Develop understanding of statistical variability.				
6.SP.A. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for variability in the answers.	Throughout this draft the term "recognized" has been changed to "understand" with the rationale that recognize cannot be measured but understand can....now recognize is used? Be consistent. I do not agree anyway as I think you can measure if someone can recognize something but not if they understand it; \qquad **। support the adoption of this standard.	Wurman-Examples are helpful and shouldn't have been removed. Milgram-This is horribly misstated and almost certainly represents a serious misunderstanding of the subject.	Based on technical review, example was restored.	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for variability in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
6.SP.A. 2	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape	\| support the adoption of this standard.	Milner-In 6.SP.A. 2 "which" should rather be "that" (better English usage). Moreover, "can be described by its center, spread, and overall shape" is very problematic, indeed false. The standard should read "Understand that a set of data collected to answer a statistical question has a distribution whose general (or overall) characteristics can be described by its center, spread, and overall shape."	Based on Milner's comment, edits were made.	Understand that a set of data collected to answer a statistical question has a distribution whose general characteristics which can be described by its center, spread, and overall shape.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
6.SP.A. 3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a variation measurement uses a single number to describe the spread of the data set.	Let's make sure we are using ratios that 6th graders understand. They do not understand gas mileage. **Which units of center and spread methods, be specific **I support the adoption of this standard. **Throughout this document the term "recognize" has been replaced with "understand" stating the rationale that understand is measurable and recognize is not. Be consistent. I disagree...you can tell if someone recognizes something but not if they understand it.	Milner-In 6.SP.A. 3 the word "variation" is used as a synomym for "spread" in 6.SP.A.2. In 6.SP.B. 5 yet a third word, "variability" is introduced. Why are three different terms being used for one concept? Wurman-"Variation measurement" is an odd way to replace "measure of variation." Measurement implies direct measurement, while measure can be a derived value. Variation is derived Milgram-For a general distribution the usual situation would be that, to describe it will require at least an infinite number of invariants of the distribution	Based on technical review, edits were made.	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a variation measurement measure of variation uses a single number to describe the spread of the data set.
6.SP.B	Summarize and describe distributions.				
6.SP.B. 4	Display and interpret numerical data in plots on a number line including dot plots, histograms, and box plots.	1QR is tough. Easy to figure out, but has little meaning to 6 th graders.	chieve-AZ increased rigor by adding the requirement to interpret.		Display and interpret numerical data by creating in plots on a number line including histograms, dot plots, and box plots.
6.SP.B. 5	Summarize numerical data sets in relation to their context, such as by: a. Reporting the number of observations. b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	Measures of variability should not be taught at 6 th grade. They struggle to make real world connections to the concept. I support the adoption of this standard without the measures of variability. **Mean absolute deviation is nothing that a 6th grader needs to know. They have no idea what it is and why it is useful. It is beyond them in SO many ways. Save it for older grades/classes that focus on stats. **Use the same terminology-is it spread or variability; is it center or shape; thanks for taking out range and mode; Median Absolute Deviation is what the real world uses		Based on the GAISE report and the summary of the CBMS Survey on statistical education, in order for students to understand and use measures of center they need an underlying understanding of variability; therefore, the learning progression requires that we begin with variability to build the concept of measures of center	Summarize numerical data sets in relation to their context-sules by: a. Reporting the number of observations. b. Describing the nature of the attribute under investigation including how it was measured and its units of measurement. c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.
SMP	Standards for Mathematical Practice		Achieve-The ADSM revised the language for each of the eight Standards for Mathematical Practice and have helpfully included the practices at each grade level. Positioning the Practices with each grade's content standards shows a commitment to their emphasis and serves as a reminder for teachers to attend to them. Achieve recommends adding grade-specific descriptors for each grade level to tailor the message for different grade levels or bands to make them clearer and more actionable for educators.	Grade level specific examples will be included in support documents for each standards for mathematical practice	
6.MP. 1					

6th Grade Arizona Mathematics Standards

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7th grade Mathematics Standards					
Ratio and	portion (RP)		Carlson -These standards are coherent and logical. Abercrombie-These standards are clear, measurable, and developmentally appropriate. The inclusion of the limits in standard 7.RP.A. 3 are appropriate and useful. No suggestions for refinements were identified. The standards are written so that they will be unambiguously interpreted across the state. Milner-The fundamental concepts are introduced in the wrong order. Rates need to be defined AFTER proportional relationships. This fact becomes crystal clear in 7.RP.A.2b.	Reason for no change (Milner comment) The 6-7 Ratios and Proportional Relationships progression (2011) document states, "Rates are at the heart of understanding the structure ... providing a foundation for learning about proportional relationships in seventh grade." (pg. 5)	
7.RP.A	Analyze proportional relationships and use them to solve mathematical problems and problems in a realworld context.				Analyze proportional relationships and use them to solve mathematical problems and problems in real-world context.
7.RP.A. 1	Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like and different units.		Milgram-Actually, this version is basically incoherent. The original version of this standard is FAR BETTER. Leave it the way it was! Achieve-Complex fractions are used as examples in the CCSS rather than included in the wording of the standard. AZ specifically calls out complex fractions in this standard's requirements and removes the CCSS examples. This is a nice modification that makes the distinction from 6.RP more clear. Wurman-Yet again, the examples are clarifying and should be retained. The "or" in "like or different units" was incorrectly replaced by "and." Do we really expect only problems that have BOTH like AND different units?	Based on Wurman's comment an edit was made to change "and" to "or". Exmaples will be included in the suppport documents.	Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.RP.A. 2	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.		Milgram-Again, the original version of this entire standard (including parts (a), (b), (c) and (d)) is far better than this one. [This is particularly the case for part (c).] Wurman-The examples in sub-standard (a) clarify the standard and should be restored.	Based on Milgram and Wurman's comments, the examples were restored.	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
7.RP.A. 3	Use proportional relationships to solve multistep ratio and percent problems. (Limited to: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.)		Milner-In 7.RP.A. 3 the examples were meant to indicate desirable applications, not comprehensive limits. Why preclude the ratio of legs to people, for example? Milgram-Reasonable standard. Achieve-AZ changed the CCSS examples to limitations. By making this change, AZ appears to exclude other applications of the standard. For an example, see the activity provided by Illustrative Mathematics for 7.RP. 3 (https://www.illustrativemathematics.org/contentstandards/7/RP/A/3/tasks/102), which no longer matches the AZ standard. Wurman-Retain the examples as examples otherwise, for example, time \& distance problems will be forbidden!	Based on Milner, Achieve, and Wurman's comments, edits were made.	Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
The Number	em (NS)		Carlson -These standards are coherent and logical. Abercrombie-These standards are clear, measurable, and contain sufficient breadth and depth. The vertical alignment of these standards is excellent, and the refinements made to the standards are useful. The standards are written so that they will be unambiguously interpreted across the state.		
7.NS.A	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.		Milner- should begin "Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide any rational numbers, except division by zero." "Apply and extend previous understandings of addition and subtraction to add and subtract any rational numbers."	Edits made based on Milners comment.	Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide any rational numbers except division by zero.
7.NS.A. 1	Apply and extend previous understandings of addition and subtraction to add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . b. Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.		Milgram-I'm afraid I have no idea of what a horizontal or vertical number line diagram might be. Please clarify, or use more standard terms d. Apply properties of operations as strategies to add and subtract rational numbers. This needs to be clarified. Perhaps an example or two might help. Achieve-AZ specifically calls out integers as part of the set of rational numbers. This clarification helps teachers spot the progression of integers in the standards. Wurman-- The addition of "integers" to "rational numbers" is wrong-headed, dumbing down the standard by focusing on integers. - Restore the clarify examples to (a). - (b) could use an example to clarify the "interpret sums of rational numbers by describing real-world context." Surely this clause can't simply mean to use world problem with addition of integers, decimals, and fractions: this was already previously addressed in grades 4,5 , and 6 . Milner-7.NS.A. 1 should begin "Apply and extend previous understandings of addition and subtraction to add and subtract any rational numbers."	Milner's comment is addressed in the standard cluster heading. Examples will be included in the supporting document. Apply and extend previous understandings of addition and subtraction- deleted from stem of standard since this is a repeat of the cluster heading.	Apply andextend previous understandings of integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0. b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing realworld context. c. Understand subtraction of rational numbers as adding the additive inverse, p $-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real world context. d. Apply properties of operations as strategies to add and subtract rational numbers.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.NS.A. 2	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide integers and other rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in $0 s$ or eventually repeats.		Milgram-Terminating in 0's is a SPECIAL CASE of "eventually repeats." I would strongly suggest rephrasing (d) the part of (d) that starts "know that the decimal form of a rational ..." as follows: "know that the decimal form of a rational number eventually repeats. For example, a rational number of the form m (a whole number) divided by a power of ten eventually has 0 as its repeating term. Similarly $\mathrm{m} / 3$ has either 3 or 6 as it's repeating term as long as m is not divisible by 3 ." Wurman-- The added integers in "integers and rational numbers" should be removed, unless the purpose is to dumb down the standard by focus on integers; - sub-standard (a) should be clarified. It is unclear how the multiplication and division operations can be "extended" from fractions to rational numbers when fractions ARE rational numbers; - sub-standards (d) should add "form" in "Convert a rational number to decimal form using ..." Decimals are not some new kind of numbers.	Based on Wurman's feedback an edit was made. Apply and extend previous understandings of addition and subtraction- deleted from stem of standard since this is a repeat of the cluster heading.	Apply and-extend previous- understandings of multiplication and division and of fractions to-Multiply and divide integers and other rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world context. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world context. c. Apply properties of operations as
7.NS.A. 3	Solve mathematical problems and problems in a realworld context involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)		Milgram-Probably would be worthwhile to remind readers that complex fractions are fractions of the form $(a / b) /(c / d)$, with a, b, c, and d all integers with b, c, and d , non-zero. The term "complex fraction" is not necessarily "standard." Wurman-A minor comment: carrying low-level explanations in the name of consistency to higher grades seems uncalled for. "Four operations with rationals" is perfectly clear at this grade. Milner-7.NS.A. 2 should begin "Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide any rational numbers, except division by zero."	Based on Milgram's comment, edits were made. Milner's comment is addressed in the standard cluster heading.	Solve mathematical problems and problems in real-world context involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $d \neq 0$.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
Expression	and Equations (EE)		Carlson- In the high school standards (at least the current ones) it explicitly discusses evaluating as linked to using an input value to determine the corresponding output value, and solving an equation as using an output value to determine the corresponding input value. I argue that this way of thinking and terminology should be used in grades $6-8$ as appropriate both because they are extremely powerful ways to think about the processes by also because it opens up multiple solution paths and methods for checking the reasonableness of solutions. Abercrombie-In terms of developmental appropriateness, the 6 th grade standards in this domain are likely to be quite challenging for 6th graders since students at this age are just beginning to be able to think representationally and abstractly, requirements for understanding algebraic expression and equation. Providing some limit to the complexity of the algebraic expressions would make these standards more developmentally appropriate, such as limiting the number of variables in an expression, or the types of operations included in the expressions. That said, the standards are written clearly and are measurable, and interpretation of these standards should be unambiguous across the state.		
7.EE.A	Use properties of operations to generate equivalent expressions.				
7.EE.A. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.				
7.EE.A. 2	Rewrite an expression in different forms in a problem context and understand the connection between the structures of the different forms.	I like the like the greater DOK and clarification of expectation.	Milgram-My view is that the original version with it's example is much clearer than this revision. Achieve-The CCSS standard addresses how rewriting an expression can help make better sense of the relationships between quantities in a problem. AZ changed the meaning of this CCSS by requiring rewriting and leaving out how the new version of an expression can "shed light on the problem." They have made the rewriting more about the expressions themselves, rather than the context. This modification also lacks clarity. It is not clear what is meant by "the connection between the structures of different forms." Wurman-The removal of the example made this standard even more opaque than it originally was. Presumably that was not the purpose. Milner-In the proposed 7.EE.A.2, the wording should be changed to "Rewrite an expression in a problem context in different forms and understand the connection between the structures of the different forms and its meaning in the particular context."	Based on technical review, edits were made and the example was restored for clarity.	Rewrite an expression in different forms, and understand the relationship between the different forms and their meanings in a problem context. For example, $a+$ $0.05 a=1.05 a$ means that "increase by 5\%" is the same as "multiply by 1.05."

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.EE.B	Solve mathematical problems and problems in a real world context using numerical and algebraic expressions and equations.				Solve mathematical problems and problems in real-world context using numerical and algebraic expressions and equations.
7.EE.B. 3	Solve multi-step mathematical problems and problems in a real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers using mental computation and estimation strategies.		Milgram-.I would delete the last phrase in the second sentence "using mental computation and estimation stragegies." Also, I strongly suggest that you PUT BACK THE FIRST EXAMPLE, which for correctness and precision should be revised as follows: "For example: If a woman making \$25 an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of \$27.50per hour." Achieve-AZ removed the CCSS example, the requirements for specific number sets required, the strategic use of tools (addressed in MP.5), and the application of the properties of operations (addressed in 7.NS). These two deletions have removed references to the Practices and to making connections across the domains. Both are important to making sure teachers do not lose sight of the importance of both. Wurman-The rewrite is reasonable, yet how will students learn conversion among different forms of rationals if standard AZ.6.NS.C. 9 was suggested for removal in the previous grade??	Based on technical review, edits were made and the example restored for clarity.	Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. using mental computation andestimation strategies.For example, If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or \$2.50, for a new salary of $\$ 27.50$ per hour.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.EE.B. 4	Use variables to represent quantities in mathematical problems and problems in a real-world context, and construct simple equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.		Milgram-Use variables to represent quantities inmathematical problems and problems in a real-world context, and construct simple equations and inequalities to solve problems by reasoning about the quantities.I would strongly suggest removing the last phrase "by reasoning about the quantities." This is both difficult to test and mostly instructions for pedagogy, cutting down on the teachers best judgment .I would strongly suggest putting back the example. Wurman-Rewrite is more or less fine language-wise, but I suggest to remove the "specific" from "specific rational numbers." This gives the impression that they must be some specific numbers, while the intent here is simply to say they can be any rational numbers. Or simply call them "rational constants." Milner-In the proposed 7.EE.B.4b, non-strict inequalities should be included for consistency with 6.EE.B.8.	Based on technical review, edits were made. Examples will be included in a support documents.	Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems reasoning the quantities. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalities of the form $p x+q \gg$ or $p x+q$ $<r$, where p, q, and r are speific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
Geometry (G)			Abercrombie-In general, the standards are measurable, clear, contain breadth and depth, and are developmentally appropriate. The vertical and horizontal alignment is clear. The focus on real-world application is a strength.		
7.G.A	Draw, construct, and describe geometrical figures and describe the relationships between them.				Draw, construct, and describe geometrical figures, and describe the relationships between them.
7.G.A. 1	Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.				

Coding	Draft Plus Standards - as of 8/2016	$\begin{aligned} & \hline \text { Public Comment- Fall } \\ & 2016 \end{aligned}$	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.G.A. 2	Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.		Milgram-The major question I have here is HOW CAN YOU POSSIBLY TEST THIS STANDARD. But there are other issues as well. First, the condition for the existence of a triangle with given side lengths a, b, and c , is that the sum of any two of them is GREATER THAN OR EQUAL to the remaining length, and I do not recall that this condition has been mentioned in the standards list to this point. (I believe it first appears in the high school geometry standards.). And there are similar issues the other cases as well. In short there appears to be no background for this standard. In fact, I think the best thing you can do here is to delete the entire standard.		Draw (freehand, with ruler and protractor, and with technelogyl geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G.A. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.		Milgram-Again, there is a huge issue with testing this. And there are many possibilities for the resulting figures. If you insist on keeping this standard I strongly suggest that you limit it using examples of what is to be expected and tested. Milner-7.G.A. 3 contains examples that should be removed for consistency with many other standards in which examples were removed. Examples are not included within a standard unless an example would provide limits to the standard or clarification to the standard, which here they do not.	Due to limited instructional resources, multiple examples will be included in support documents.	Describe the two-dimensional figures that result from slicing threedimensional figures.as in planesections of right rectangular prisms and right rectangular pyramids.
7.G.B	Solve mathematical problems and problems in a real world context involving angle measure, area, surface area, and volume.				Solve mathematical problems and problems in real-world context involving angle measure, area, surface area, and volume.
7.G.B. 4	Understand and use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	Will they be given a formula sheet? They no longer need to "know" the formulas, just understand them...We think they actually need to both know and understand	Milgram-How are you going to test this "informal derivation?" I would strongly suggest that the second phrase starting "give an informal ..." be deleted, and that at least one example of the kind of problem that you expect to be solved be included. Achieve-AZ changed "know" to "understand and use." This wording has the same meaning and intent, but rigor is increased.	Based on Milgram's comment, examples will be included in the support documents. As stated in the introduction, the formula should be developed from a foundation of conceptual understanding and formula mastery should include this understanding as well as use of the formula in specified applied problems.	

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.G.B. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.		Milgram-There are a vast number of problems that could be constructed to test this standard ranging from roughly fourth grade difficulties all the way up to advanced college geometry courses. I would strongly suggest examples to show what kinds of facts are expected and how difficult the problems are to be. Milner-7.G.B. 5 should have "a multi-step problem" in plural. A good refinement to add here would be the non-commutativity of transformations. For example: "Understand that two plane transformations of a figure may produce different resuts when applied in different order."	Based on Milner's comment, edits were made.	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problems to write and solve simple equations for an unknown angle in a figure.
7.G.B. 6	Solve mathematical problems and problems in a realworld context involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.		Milgram-Same comments as for the above standard, 7.G.B.5.	Based on Milgram's comment, examples may be included in the supporting document.	Solve mathematical problems and problems in a real-world context involving area, volume and surfacearea of two-and three-dimensional objects composed of triangles, quadrilaterals, and other polygons. cubes, and right prisms. Solve mathematical problems and problems in real-world context involving volume and surface area of three-dimensional objects composed of cubes and right prisms.
Statistics and	obability (SP)		Abercrombie-The standards in this domain are very well written - they are clear, measurable, demonstrate a logical progression of knowledge in terms of breadth and depth, and are easily interpreted. Moving 8.SP.B. 1 from 7th grade to 8 th grade enhances the knowledge progression across grades. The standards are developmentally appropriate.		
7.SP.A	Use random sampling to draw inferences about a population.				
7.SP.A. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.		Milgram-Vague. As written too general to test.	The workgroup determined no edits are needed.	

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.SP.A. 2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.		Milgram-It would be extremely helpful to give examples to limit this standard and show what is expected. Wurman-Yet again, good clarifying examples are removed.	Based on technical review, example was restored.	Understand that statistics can be used to gain information about a population by examining a sample of the population; generaraizations about a populataion from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. For example, estimate the mean word length in a book th randommy sampling words from the book; predict the winner of a school election based on randomly sampled survey yatat. Gauge how far offf the estimate or prediction might be.
7.SP.B	Draw informal comparative inferences about two populations.				
7.SP.B. 3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability (mean absolute deviation).	1 like the clarification	Milgram-And how do you intend to test this standard? Give examples or delete. Achieve-In the CCSS, the mean absolute deviation is used in the example as a way of demonstrating the difference between centers and allows for other measures of variability. AZ's inclusion of "(mean absolute deviation)" at the end of the standard makes it seem that this defines MAD rather than serving to clarify MAD as the measure of variability that is expected here. Wurman-Yet again, good clarifying examples are removed.	Based on technical review, example was restored.	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. (mean absolute deviation).For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.SP.B. 4	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.		Milner-In 7.SP.B. 4 the example is important as clarification for the standard; clearly the intention of the standard is not finding the means for each distribution and then mechanically saying that they are different and which is larger. The applications must be meaningful and avoid, for example comparing the mean height of students in a school with the mean annual rainfall in Seattle in the last 100 years. Milgram-PUT BACK THE EXAMPLE. Wurman-Yet again, good clarifying examples are removed. Teachers already have difficulty with statistics in the middle school. This will surely make them worse.	Based on technical review, example was restored.	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.
7.SP.C	Investigate chance processes and develop, use and evaluate probability models.				
7.SP.C. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring.	This standard should stay in the 8th grade with the other probability standards. This standard does not fit with the statistics and doesn't allow for in depth probability exploration when separated from the rest of the probability standards in the 8th grade.	Carlson-7.S.S.C.5: "Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of an event occurring." Be more specific, since the wording of this standard allows for teachers to specifically teach, and students to develop, fuzzy and unproductive meanings for probability (for example a person saying "there's a $50-50$ probability because I don't know what the outcome will be) that are not consistent with the mathematical definitions of probability. Replace this standard with the definition of probability as the long-term relative frequency of an event. Miliner-In 7.SP.C. 5 "Larger numbers indicate greater likelihood" is essential for the expected understanding. In the Notes the word "involved" is misspelled. Wurman-Yet again, good clarifying examples are removed. Teachers already have difficulty with statistics in the middle school. This will surely make them worse.	Probability and statistics are interrelated and probability is a natural outgrowth of statistical analysis which is why they occur within one domain. The 6th grade SP standards lay the foundation of statistical analyses which will lead to foundational probability concepts in 7th grade that culminate in more complex probability concepts in 8 th grade and high school (a learning trajectory). Based on technical review, edits were made. Based on Wurman's comments,e xamples will be provided in the support documents.	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.SP.C. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.	This standard should stay in the 8th grade with the other probability standards. This standard does not fit with the statistics and doesn't allow for in depth probability exploration when separated from the rest of the probability standards in the 8th grade.	Wurman-Yet again, good clarifying examples are removed. Teachers already have difficulty with statistics in the middle school. This will surely make them worse.	Based on Wurman's comments example was restored.	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
7.SP.C. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	This standard should stay in the 8th grade with the other probability standards. This standard does not fit with the statistics and doesn't allow for in depth probability exploration when separated from the rest of the probability standards in the 8th grade.	Wurman-Yet again, good clarifying examples are removed. Teachers already have difficulty with statistics in the middle school. This will surely make them worse.	In the 2010 standards, all middle grades probability standards were in 7th grade. Probability and statistics are interrelated and probability is a natural outgrowth of statistical analysis which is why they occur within one domain. The 6th grade SP standards lay the foundation of statistical analyses which will lead to foundational probability concepts in 7th grade that culminate in more complex probability concepts in 8th grade and high school (a learning progression). Based on technical feedback, examples were restored.	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. appear to be equally likely based on the observed frequencies?

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
SMP	Standards for Mathematical Practices		Achieve-The ADSM revised the language for each of the eight Standards for Mathematical Practice and have helpfully included the practices at each grade level. Positioning the Practices with each grade's content standards shows a commitment to their emphasis and serves as a reminder for teachers to attend to them. Achieve recommends adding grade-specific descriptors for each grade level to tailor the message for different grade levels or bands to make them clearer and more actionable for educators.	Grade level specific examples will be included in support documents for each standards for mathematical practice.	
7.MP. 1	Make sense of problems and persevere in solving them. Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.				

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.MP. 2	Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.				
7.MP. 3	Construct viable arguments and critique the reasoning of others. Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming, questioning, or debating the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it. Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.				

Coding	Draft Plus Standards - as of 8/2016	$\begin{gathered} \hline \text { Public Comment- Fall } \\ 2016 \end{gathered}$	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.MP. 4	Model with mathematics. Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.				
7.MP. 5					

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
7.MP. 6	Attend to precision. Mathematically proficient students clearly communicate to others and craft careful explanations to convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.				
7.MP. 7	Look for and make use of structure. Mathematically proficient students use structure and patterns to provide form and stability when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective when needed.				
7.MP. 8	Look for and express regularity in repeated reasoning. Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.				

		Public Comment-Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
8th grade Mathematics Standards Number Systems (NS)			Carlson-These standards are coherent and logical. Abercrombie-These standards are clear, measurable, and contain sufficient breadth and depth. The vertical alignment of these standards is excellent, and the refinements made to the standards are useful. The standards are written so that they will be unambiguously interpreted across the state. Milner-A good refinement of this domain would be the addition of a standard about the density of rational and of irrational numbers among the reals. For example, "8. NS.A. .3: Understand that given any two distinct rational numbers, a $<$ b say, there exist a rational numer cand and irrationa two distinct rational numbers, $a<b$ say, there exist a rational number c and and irrational number d such that $a<c<b$ and $a<d<b$. Similarly, iviven any two distinct irrational numbers, $a<b$ say, there exista that $a<c<b$ and $a<d<b$. Simiarly, given any two distinct irrational numbers, $a<b$ say, there exist a rational number cand and irrational numberd such that $a<c<b$ and $a<d<b, "$	Based on Milner's comment, this a new standard added to the progression. Examples will be included in support documents.- 8.NS.A. 3	
8.NS.A	Understand that there are numbers that are not rational, and approximate them by rational numbers. numbers.				Understand that there are irrational numbers, and approximate them using rational numbers
8.NS.A. 1			Milgram-There are at least two very important topics and standards being confused here. First, "every number has a decimal expansion," second, "rational numbers are those with decimal expansions that terminate in zeros or eventually repeat." Also, the statements themselves are terribly imprecise. The correct second statement is "rational numbers are exactly those numbers with decimal expansions that EVENTUALLY repeat. Typically, one can have a number like 472.5791333333... that start repeating only after a certain point. These are the rationals. Also, one needs to understand that DECIMAL EXPANSION also needs to be expanded on. It is far from obvious or even easy. Achieve-Finally, there are occasional inconsistencies between the changes in the standards and the changes listed in the technical notes. It it unclear in these instances which information reflects the latest that change was not mentioned in the notes. It is not clear if the change is a mistake or intentional. Milner-..NS.A.1. should rather end with "Know that numbers whose edecimal expansions do not terminate in eeros or in a repeating sequence of fixed digits are called irrational." terminate in zeros or in a repeating sequence of fixed digits are called irrational."	Based on technical review comments, edits were made. Milner's comment, "numbers whose decimal expansions do oot terminate in zeros or in a repeating sequenee of fixed digits are called rational" can potentially be included in the glossary.	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.NS.A.2			Milgram-This standard is not appropriate. "Rational approximation" alone is something that needs a great deal of independent discussion. It is much better simply to leave this to college courses. Wurman- Both the original and the rewrite should replace "value of expressions" simply by "their values." For example, it is unclear what is the "expression" to be evaluated in the case of pi by eight graders, or whether square root of an integer is an expression or just a notation. The suggested edit avoids this issue Milner-8.NS.A. 2 should end with "and estimate the value of expressions involving irrational numbers."	Based on Wurman's comment, an edit was made.	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate their values
8.NS.A. 3				Based on Milner's comment, this a new standard added to the progression. Examples will be included in support documents.	Understand that given any two distinct rational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$. Given any two
Exxressions and Equations (EE)			Carlson- In the high school standards (at least the current ones) it explicitly discusses evaluating as linke to using an input value to determine the corresponding output value, and solving an equation as using an output value to determine the corresponding input value. I argue that this way of thinking and terminology should be used in grades $6-8$ as appropriate both because they are extremely powerful way to think about the processes by also because it opens up multiple solution paths and methods for checking the reasonableness of solutions. Abercrombie-In terms of developmental appropriateness, the 6 th grade standards in this domain are likely to be quite challenging for 6 th graders since students at this age are just beginning to be able to think representationally and abstractly, requirements for understanding algebraic expression and equation. Providing some limit to the complexity of the algebraic expressions would make these standards more developmentally appropriate, such as limiting the number of variables in an expression, are measurable, and interpretation of these standards should be unambiguous across the state.	Based on Carlson's comments, examples will be included in support documents that utilize the high school terminology.	
8.EE.A	Work with radicals and integer exponents.				
$8.8 . E$. A. 1	Understand and apply the properties of integer exponents to generate equivalent expressions.	Where is the progerssions document please?	Milner-In 8.EE.A.1, the adjective numerical is an essential qualifier of expressions because this standard is not intended for variables.	Based on Miliner's feedback, the term numerical was added as an adjective.	Understand and apply the properties of integer exponents to generate equivalent numerical expressions

8.EE.A. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=$ p and $x^{3}=p$, where p is a positive rational number. a. Evaluate square roots of perfect squares less than or equal to 225 , and rewrite in equivalent form non-perfect squares. b. Evaluate cube roots of perfect cubes less than or equal to 625 , and rewrite in equivalent form non-perfect cubes.	Adding rewriting non-perfect squares and cubes will add at least a week of teaching time we do not have since nothing was removed from the standards **। like the limits on root values. **। like the limits on root values. **। would just like some clarity. Does "rewrite nonperfect squares and cubes" mean to simplify radicals? **This is an important numeracy skill that needs to extend to the high school standards or it needs to be explicitly stated that working with square root and cube root values is securely held knowledge. Something to consider, at what level are student expected to combine irrational numbers (add, subtract, multiply divide). Should this be written explicitly as a standard? **Does "equivalent form" mean simplified or an	Milgram-Notation is not MAGIC. It is simply a convenience to avoid continuously using the same words over and over. It is better to state a relevant standard in the form "Demonstrate familiarity with the use of square root and cube root symbols in mathematical expressions." Evaluate square roots of perfect squares less than or equal to 225, and rewrite non-perfect squares in equivalent form. This is something that fourth grade students can easily learn. It is really far too elementary to delay it till grade 8 equivalent for ropriate example for this standard at the eighth grade level. roots and removed knowing that sqrt(2) is irrational. The notes claim this is now addressed in 8.NS.1, but that connection is unclear. In addition to other changes, AZ includes "rewrite non-perfect squares in equivalent form" and "rewrite non-perfect cubes in equivalent form." The intention here is not mathematically clear. For example, what are students expected to do with $V 7$? This appears to overlap with A2.N-RN.A. 2 and will be a time consuming addition to the standard. The technical notes indicate this is a foundational concept that is part of the progression to Algebra" but such a claim is far from Norm." $8 . E$ E.A.2a, the end should read "rewrite square roots of non-perfect squares in equivalent Milner-In form." The same applied to part b for cube roots.	Based on public comment the original 8.EE.A. 2 in the 2010 standards, was unclear. Therefore, limits were included along with an elaboration on the type of roots to both improve clarity and maintain the learning progression. Based on Milner's comments, edits were made.	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$ where p is a positive rational number. Know that $\mathbf{V} \mathbf{2}$ is irrational. a. Evaluate square roots of perfect squares less than or equal to 225 . and rewrite in equivalent form non-perfect squares. b. Evaluate cube roots of perfect cubes less than or equal 1000. 625 and rewrite in equivalent form non perfect cubes.

8.EEA. 3				The workgroup determined that no changes were necessary.	
8.EE.A.4	Perform operations with numbers expressed in scientific notation including problems where Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. Interpret scientific notation that has been generated by technology	This is another skill that should extend into high school. I don't think it is mentioned int eh high school standards, but it comes up in upper level math classes Students have issues with interpreting scientific numbers reported to them using technical devices Might be something to mention in the high school standards.	Milgram-Good standard, except, probably for the last sentence, which might be interpreted as requiring that the standard only should be tested with numbers "generated by technology." I would strongly suggest that this last sentence be deleted Wurman-See comment on the previous standard	Based on Milgram's comments, edits were made.	Perform operations with numbers expressed in scientific notation including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities, thterpretseneificnetation that has beengenerated by technology.
8.EE.B	Understand the connections between proportional relationships, lines, and linear equations.				
${ }^{8 . E E E . E .5}$	$\begin{aligned} & \text { Graph proportional relationships, interpreting } \\ & \text { the unit rate as the slope of the graph. Compare } \\ & \text { two different proportional relationships } \\ & \text { represented in different ways. } \end{aligned}$		Milgram-I strongly disagree with the removal of the example. I would agree that, as written, the example is confusing, but it represents an absolutely key aspect of the standard. I would only suggest that it be made clear that in the example the intent is to use LINEAR equations and understand that the larger the SLOPE, the faster a particle (represented by its' x-coordinate) will be traveling along the Wurman-The standard speaks only of a single way to represent pre is important to clarify what is meant by "different ways."	Based on Milgram and Wurman's comments, the examples were restored.	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.EE. . 6.6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at $(0, b)$		Milgram-See my comments for the standard directly above. In many respects, this standard is too subtle for grade 8 unless the grade 8 course is a real course in algebra rather than, as is the case here, a course in pre-algebra. It is meant to tie the GEOMETRIC definition of a straight line to the graph of a linear equation, and is supposed to be a basic application of the standard above. Achieve-AZ version includes both coordinates for the intercept. This is an improvement on the CCSS version. Wurman-Actually specifying the intercept of "vertical axis at ($0, \mathrm{~b}$)" is a tautology and certainly not any more accurate than just "vertical axis at b."	The workgrou determined that no change were necessary.	
8.EE.C	Analyze and solve linear equations, inequalities, and pairs of simultaneous linear equations.		Achieve-AZ added inequalities to the 8.EE.C cluster. This is a time-consuming change and it is not clear why this needs to happen here rather than in Algebra 1.		
8.EEC. 7		Will student's be required to graph linear inequalities as well? Adding inequalities to our standards will require more teaching time we simply do not have! If you are going to add concepts some need to be removed! Accept		n response to public comment: This standard does not require the graphing of inequalities. The inclusion of inequalities strengthens the learning progression to ensure no gap between 6th grade and high school and supports students' understanding of multiple solution situations. Adding "fluently" supports the learning progression.	Fluently solve linear equations and inequalities in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=$ a, or $a=b$ results (where a and b are different numbers). b. Solve linear equations and inequalities with rational umber coefficients, including solutions that require expanding expressions using the distributive property and collecting like terms.

8.EE.C. 8		https://twitter.com/azedschools/status/76426907237 6819712 On Aug 12, ADE Tweeted and example where systems of 3 linear equations are part of this standard. Looking at Algebra 1, Algebra 2, and 8th grade, I am not sure where systems of three equations belong. 8th grade is specifically stating pairs of equations. Are systems of required for all students in the state of AZ?	Milgram-I again disagree with the removal of the examples. This is a very difficult standard for students at the pre-algebra level, and without the examples to limit the standards, the standard will either be interpreted too simplistically or will be too difficult for the typical student to handle. Wurman- - Consider adding inequalities as in the previous standard - Consider explicitly mentioning the cases of no solution and infinite number of solutions in (b), as an example of no solution is used in the original Milner-In 8.EE.C.8c, the wording should be "Solve mathematical problems and problems in a real-world context", for consistency	Based on Milgram's, Milner's, and Wurman's comments, examples will be included in support documents. Based on Wurman's comments, edits were made to the standard.	
Functions (F)				Based on Carlson's comments, edits to 8.F.B.4 were made.	
8.F.A	Define, evaluate, and compare functions.				
8.F.A. 1				The workgroup determined no edits were needed. Based on Milgram's comments, specific examples will be included support documents	
8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, descriptions)		mechanically say not of t the other. Milgram-Again, itis crucial that a limiting example be part of this standard. I would agree that the included example could easily be improved on, but there really should be an example. Wurman-The example was helpful to clarify that the purpose is to compare simila f functions only linear?) rathe than different ones such as linear and exponential. The proposed revision. certainly is wide open to comparing any tunction to any other tunction, whatever such discrete with continuous, quadratit with exponential). Should be clari fied!	Based on technical review, example was restored.	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions) For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F.A. 3	Interpret the equation $y=m x+b$ as defining a inear function whose graph is a straight line; giv examples of functions that are not linear.			No revision necessary	
8 8.f. B	Use functions to model relationships between				
8.F.B. 4			Milgram-Bad standard. What does it mean to "construct a function" here? Does it mean that the student is siven a verbal description of s situation and is ssked to model it with an appropriate function? Ift means something else, then this should be carrifie. And what does	Based on Miligram's feedback, edits were made.	Construct a function Given a description of a situation, generate a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or a graph. Track how the values of the two quantities change together. Interpret the rate of change and initial value of a linear function in terms of the situation it models, its graph, or its table of values.

8.F.b. 5		Wurman-The example clarified that the standard is after basic relationships such as increase, decrease, or remain flat (constant). It also indicated that relationships such as oscillating, converging, or asymptotic are not expected here. Without an example, anything goes.	on Wurman's feedback, the example was restore.	
Seometry (6)				
8 8.G.A	Understand congruence and similarity.			
8.G.A.1		Milgram-.It should be clarified whether there are further properties that might be asked about. My own view is that the three properties (a), (b), and (c) in the original standard are all that should be asked about in questions constructed to (berent this standard. Achieve-AZ uses a different format for this standard. This wording has the same meaning, intent, and rigor as the CCSS Wurman-The reason for removal of the "lines are taken to lines" is mathematically incoherent and the phrase must be restored. Also restore "taken" in "line segments are taken to line segments ..." either explicitly or by implicit transfer from the previous clause.	In response to technical reviev, edits were mac.	
8.G.A. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two exhibits the exhibits the congruence between them	Wurman-- a cleaner way is to speak about "one can be obtained from the other" rather than in terms of "first" and "second," as congruence is reflexive - should speak about the sequence that demonstrates congruence rather than exhibits congruence	Based on Wurman's comments, his suggested wording was integrated into the standard.	Understand that a two-dimensional figure is congruent to another if one can be obtained from the other the的 rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence. exhibits the congruence between them.
8.G.A. 3	Describe the effect of diliations, translations, rotations, and reflections ont too-dimensional figures using coordinates (rotations and dilations about the origin).		In response to technical review, edits were made to exclude the linit.	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates (rotations and-dilations about the-origin)
8.G.A. 4	Understand that a two-dimensional figure is from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	Milgram-It should probably be understood that, in actuality, the material before the semi-colon is A DEFINITION. (Two two-dimensional figures are similar IF AND ONLY IF the second can be obtained the first by a sequence of rotations, reflections, translations, and dilations.) Then the rest of the "standard" represents what kind of question will be appropriate to test student understanding. It should be delimited, though, since, as phrased, it would be too easy to construct questions that are far more complex than the standard actually expects in eighth grade. Wurman- Same comment as for 8.G.A.2.	In response to technical review, edits were made.	Understand that a two-dimensional figure is similar to another if the-secone if, and only if, one can be obtained rom the first other by a sequence of rotations reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that imitratwenthem demonstrates similarity.
8 8.G.A. 5	Use informal arguments to establish facts ab, the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is $s 0$.		Based on Milgram's comment, examples may be included in the supporting document.	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
8.9.B	Understand and apply the Pythagorean Theorem.			

8.9.8. 6	Explain a proof of the Pythagorean Theorem and jits converse.	called proofs out there that are actully incorrect for example, the well known tangram proof, which the kinds of proofs that are to be eexplained, and examples of what "satisfactory" explanations of the proofs consist of. Wurman-Actually, replacing "explain the prof" bya simple "prove" would goa long way towards clarity As it is, people incessanty argue whether proof is expected or not.	Based on technical review, edits were made.	Explain a-proөf ef Understand the Pythagorean Theorem and its converse.
8.9.8. 7		Milgram-Reasonable standard Achieve-The inclusion of the parenthetical statement, "(in regard[s] to slant height)," lacks specificity, Are the thre-dimensional applications limited to slant height? Wurman-The limit to slant height in three dimensions may be reasonable, but it is a mystery why must it be only in mathematical problems.	Based on technical reviev, edits were made.	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world context and mathematical problems in two and three dimensions. and inthreedimensionsin regards to stant height. \qquad
8.G.B. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	Milgram-Reasonable standard	Norevision necessary.	
8.G.C	Solve real-world and mathematical problems involving volume(s) of cylinders, cones, and spheres.			
8.9.c. 9	8.G.C. 9 - Understand and use given formulas for the volumes of cones, cylinders and spheres to solve real-world and mathematical problems	Milgram-Examples are critically needed to limit and illustrate the intent of this standard. Achieve-AZ changed "know" to "understand," appearing to increase the rigor for this standard. While "understand" is typically considered a higher demand than "know," this phrasing states that the formula will be "given," rather than "known" by the student. Wurman-Actually "know" is the correct word here, as students will rarely "understand" the volumes of spheres and cones in this grade.	Based on comments from technical review, examples may be included in the supporting document. As stated in the introduction, the formula should be developed from a foundation of conceptual understanding and formula mastery should include this understanding as well as use of the formula in specified applied problems.	Understand and use given-the formulas for the-volumes of cones, cylinders and spheres and use them to solve rea world context and mathematical problems.
Statistics and Probability (SP)		Abercrombie-The standards in this domain are very well written - they are clear, measurable, demonstrate a logical progression of knowledge in terms of breadth and depth, and are easily interpeted. Moving 8.SP. B. 1 from 7 th grade to 8 th grade enhances the knowledge progression across grades. The standards are developmentally appropriate.		
8.SP.A	Investigate patterns of association in bivariate data.			
8.SP.A.1	Construct and interpret scatter plots for bivariate measurement data to investigate and describe patterns of association between two quantities	Wurman-Examples are extremely helpful to clarify this standard and should be e estored.	Based on Wurman's feedback, edits were made.	
8.SP.A.2	Know that straight lines are widely used to mode relationships between two quantitative variables For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.		Norevision necessary.	
8.SP.A. 3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept		No revision necessary.	
8.SP.A.4		Wurman-Relative frequencies of WHAT??	Based on Wurman's feedback, edits were made.	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two Use relative frequencies calculated for rows or columns to describe a possible association between the two variables.
8.SP.B	Investigate chance processes and develop, use, and evaluate probability models.			

8.SP. ${ }^{\text {b } 5}$		Why is this being added? We don't have time to teach the standards we have currently and this doesn't even fit in with anything that we already teach. This should remain in 7th grade		This strengthens the learning progression to ensure no gap between 7th grade and high school. Based on Wurman's review, edits were made A crosswalk including coding will be available that links the 2010 coding/standards to the final standards. This will allow teachers to continue to search for aligned resources. 7.SP.C. $8=8 . S P . B .5$	
SMP	Standards for Mathematical Practices			Grade level specific examples will be included in support documents for each standards for mathematical practice.	
8.MP. 1					
8.MP. 2					

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.N-Q.A	Reason quantitatively and use units to solve problems.				
A1.N-Q.A. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Common Core "Use units as a way to understand problems and to guide the solution of multi-step problems" what is meant by "guide" solution?	Milgram-Examples are crucial for a standard like this. There are none either in the standard or near it. Achieve-While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).	Per Milgram's suggestion, examples will be included in the supporting material Per Achieve's suggestion, see the revised standard	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays, include utilizing realworld context.
A1.N-Q.A. 2	Define appropriate quantities for the purpose of descriptive modeling. Include problem solving opportunities utilizing a real-world context.	Common Core	Wurman-Inclusion or real-world context makes sense here, but why pr opportunities? I thought the standards should not be about pedagogy. Achieve-The limitations and/or differences for the three required course are not clear in these AZ standards. In this case the "include" statement is redundant with the notion of descriptive modeling. Also, if the "utilizing real-world context" statement is important in AZ, why does Alg 2 not have the same additional statement, identifying it as a modeling standard.Additional note: There appears to be a typo in all of these additional statements to indicate modeling. In the Introduction (p 18) it says, "utilizing a real-world context." In every instance in the standards the "a" is left off.	The standard includes the statement 'utilizing real world context' so it is clear that this is a modeling standard per Page 18 of the introduction. Per Wurman's comment * 'problem-solving opportunities 's an open term giving teachers freedom over the types of problems they may use.	Define appropriate quantities for the purpose of descriptive modeling. Include problem-solving opportunities utilizing real-world context.
A1.N-Q.A. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Common Core **How is this different from the A2?	Wurman- Actually, should be "appropriate to limitation on measurement or need for precision when reporting quantities." There is no limitation on "measuring" pi or significant limitation on measuring distances among celestial bodies, yet nobody would expect 20 digits for pi or more than 2-4 digits of precision for astronomical distances. Achieve-The limitations for the three required courses are not clear in these AZ standards. While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context,"	This standard is limited to measurement. Precision is part of the mathematical practices and inherent in the standards. Per Achieve's suggestion, see the revised standard	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities utilizing realworld context.
Algebra - (A)			Milgram-these Algebra I standards are as procedural as they come. There is virtually no development of knowledge and skills here.		
Seeing Structure in Expressions (A-SSE)					
A1.A-SSE	Interpret the structure of expressions.				
	Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P.	**I am a little unclear as to what this standard is referring to. **What do you mean by complicated? If this word is used here, it needs to be defined. Do you mean to say expressions with more than 3 parts? **Common Core	Milgram-Way too much material on "expressions" what ever they are supposed to be. We really have no idea since there are way too few examples. Achieve-While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).	Per Milgram's suggestion, examples will be included in the support material According to the definition of mathematical modeling on page 18 of the introduction, modeling is not necessary for this standard but could be included at a teacher's discretion. Our revision intentionally removed the modeling statement as it is not always applicable. Per the public comments, the word 'complicated' was removed and examples will be included in the support material.	Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret eemplieated expressions by viewing one or more of their parts as a single entity. Fer example, interpret $\mathrm{P}(1+\mathrm{H}$) l as the product of Pand a factor not depending onf.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workroup Notes	Redline/Final Mathematics Standard 12/2016
A1.A-SSE.A. 2	Use the structure of an expression to identify ways to rewrite it. Focus on numerical expressions, such as recognizing 53^2-47^2 as a difference of squares and see an opportunity to rewrite it in the form (53+47)(53-47). Focus on polynomial expressions in one variable, such as seeing an opportunity to rewrite $a^{\wedge} 2+9 a+14$ as ($a+7$)($a+2$).	You are mixing numeric expressions and algebraic expressions in this standard. Maybe the numeric expressions should be in the domain of Number and then include the structure of irrational numbers and then keep the algebraic expressions here. Common Core	Achieve-The two courses demonstrate their differences through the examples.t is not clear in Alg 1 whether "polynomial" expressions would be limited to degree 2. Typically we to "en "polynomial" expressions include higher order. This is especially evident in the cal using "focus" in the additional notes in Alg 1 and "extend" as a verb in the AZZ. Both appea to be instructions for the teacher as opposed to requirements for the student. "Extend" can read as a connector for someone reading from A 1 to A , but it can also mean that students are able to "extend" polynomial expressions. This should be made more clear.	Per Achieve's comment, see the revised standard. Additional examples will be provided in the support materials.	Use structure to identify ways to rewrite numerical and polynomial expressions. Focus on polynomial multiplication and factoring patterns.
A1.A-SSE.B	Write expressions in equivalent forms to solve problems.		Milgram-All these standards focus on very formal properties and there is virtually no discussion of specific student skills at, for example, skill in factoring quadratics with integer roots or where, e.g., the factors have forms like $(x-4)(2 x+3)=2 x^{\wedge} 2-5 x-12$ where one roo is a whole number but the other is a negative fraction.		
A1.A-SSE.B. 3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. Focus on expressions with integer exponents	Common Core **Remove part b. They can use the formula to find the min/max. They do not have to complete the square. Spend more time on part a. using the quadratic equation to find zeros and then use the zeros to set graph and up factors, Use the zeros to answers real world problems and why one of the answers is not reasonable. **Suggested Rewording: Use the properties of exponents to write equivalent exponential functions expressions with integer exponents.	Milgram-This standard talks about one relatively special method for explaining or proving things. It is one among many methods that are sometimes helpful, and far, far from the most important. Yet it appears to be virtually the only method that is developed in these Algebra I standards. For what it is worth, it is probably worth pointing out that virtually all the better methods involve detailed analysis and some actual calculations. But, as I've already pointed out, this discussion of Algebral is almost entirely procedural, and minimizes skill developments. Wurman-The exhortation to focus on integer exponents is uncalled for. Algebra 1 should deal in real exponents rather than repeat itself in future grade without any significant increase in depth. In fact, the corresponding standards A2.N-RN.1-2 should be moved to Algebra 1. Achieve-AZ includes more detai about the expectations in Alg 2.While this is an identified modeling standard in the CCSS, the AZ version only includes the phrase, "utilizing a realworld context," in Alg 2. This would be needed in Alg 1, as well, per the ADSM Introduction (see page 18).	According to the definition of mathematical modeling on page 18 of the introduction, modeling is not necessary for this standard but could be included at a teacher's discretion. Our revision intentionally removed the modeling statement as it is not always applicable. The phrase 'Focus on expressions with integer exponents' was removed.	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. Focus on expressions with integer exponents.
Arithmetic with Polynomials and Rational					
Expressions (A-APR)					
A1.A-APR.A	Perform arithmetic operations on polynomials.				
A1.A-APR.A. 1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Common Core		General Comment. No action necessary.	

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.A-APR.B	Understand the relationship between zeros and factors of polynomials.				
A1.A-APR.B. 3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Focus on quadratic and cubic polynomials in which linear and quadratic factors are available.	** like that the standard is clear as to what level the students need to know **Add? Know the fundamental theorem of algebra, namely that If is a polynomial of degree n then will have exactly n zeroes, some of which may repeat. I think that the fundamental theorem of algebra should be stated either in alg 1 or alg 2 . Waiting till the plus standards is too late. However, I don't believe that the wording in the plus standards is appropriate here. Common Core	Milgram-As was the case with the previous standards 've discussed, this standard talks about the most elementary aspects of the techniques being talked about. The key phrase is "when suitable factorizations are available." There is no indication that students should learn how to FIND factorizations themselves, which is one of the major things standard Algebra I courses usually focus on, but not this one! Achieve-AZ provides limitations for Alg 2 that make it appear to be at a lower level than the unlimited Alg 1 requirement. An explanation may be needed to clarify the specific requirements for Alg 1		
Creating Equations (A-CED)					
A1.A-CED.A	Create equations that describe numbers or relationships.				
A1.A.CED.A. 1	Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing a real-world context. Focus on equations and inequalities that are linear, quadratic, or exponential with integer exponents.	Common Core	Milgram-Again, there have to be LIMITING examples to show what kinds of things are expected. But more important, there is no indication that students should develop skill in working with linear and quadratic equations and inequalities, let alone rational and exponential functions (the term "simple" does not begin to really limit this standard) Wurman-Real exponents should be allowed! Achieve-Typo: According to the ADSM Introduction the phrase should be, "utilizing a realworld context."	Per Wurman \& Achieve suggestions: see Revised standard	Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on equations and inequalities that are linear, quadratic, or exponential. with integer exponents.
A1.A-CED.A. 2	Create equations in two or more variables to represent relationships between quantities; rraph equations on coordinate axes with labels and scales.	Common Core		General Comment. No action necessary.	
A1.A.CED.A. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	**There needs to be a lot more time allocated to solving and graphing linear inequalities before this can be successful for students. **It is not clear how many equations or inequalities should be in the system. In grade 8 pairs are stated and here is is open to interpretation. Please be clear. Provide some content limits here.	Milgram-Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. EXAMPLES to limit the standard, and again, 'ld want to know what skills students are expected to learn for this.	Per Milgram's suggestion, examples will be included in the support material. The standard intentionally does not limit the number of equations or variables that teachers may choose to use.	

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review - Fall 2016	Workroup Notes	Redline/Final Mathematics Standard 12/2016
A1.A.CED.A. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	**Remove this standard. No one rearranges a ormula before using one in the real world. People plug in the information they have and solve for what they do not have. Student's time would be better spent solving equations with various missing variables, actually solve of something. **Remove the comma? Reword? Rearrange formulas to highlight a variable of interest. What is the purpose of saying that students are using the same reasoning as in solving equations? Do you mean that students are to explain their reasoning? In't that just a mathematical practice?	Milgram-Way overblown. Sure, such rearrangements are a helpful technique (among many, many others) but in practical terms and taking account of the usual skills exhibited by 9thgraders, it is far from the most important. So why is it given such a prominent place in these standards?	No action necessary	
Reasoning with Equations and Inequalities (A-REI)					
A1.A-REI.A	Understand solving equations as a process of reasoning and explain the reasoning.				
A1.A-RE.\|A. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Extend from linear to quadratic equations.		Milgram-This is an almost classic example of replacing development of basic skills in solving equations with, as a number of mathematicians would say "pretend algebra." Wurman-The term "extend" in "Extend from linear to quadratic equation" is unclear. Instead the standard should simply say "Explain each step in solving simple linear and quadratic equation as following from ..." and remove the last sentence in the proposed language. Achieve-It is not clear whether by "extend" AZ intends that both linear and quadratic are required in Alg 1. Then, in Alg 2 it is not clear whether quadratic equations are required or only rational and radical. If the former, how would rational expressions be an "extension" of quadratics? If so, how would that be explained mathematically?	Edits made per Wurman's comments. See the revised standard	Explain each step in solving linear and quadratic equations as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Extend from linear to quadratic equations.
A1.RE1.B	Solve equations and inequalities in one variable.				
A1.AREE.B. 3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters		Milgram-This should have been a major standard with lots of sub-standards to enumerate various key cases that students need to learn and develop skills to work with such examples. Then the next standard, A1.A-REI.B. 4 should be PART OF the list of substandards. Also, it should be understood that the examples in (a) and (b) below are among the most trivial possible. One should go considerably further than this in any reasonable Algebra I course.	Examples will be included in support materials.	

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.A-EE.B. 4	Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-k)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form b. Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation Focus on solutions for quadratic equations that have real roots. Include cases that recognize when a quadratic equation has no real solutions.	**Does this mean Algebra I is only responsible for completing the square when a is 1 ? **Do not use the method of completing the square! Give then the quadratic formula after they used $b / 2 x$. Once the students have mastered the quadratic formula then show them how it is linked to to the line of symmetry formula. Students need to comfortable with a formula before they can explore the whys and whats behind the formula.	Achieve-AZ includes limitations for Alg 1 but is consistent with the requirements of the CCSS. Does "focus on solutions..." really mean "limit to solutions..." here?	Examples will be included in the support materials.	
A1.A-REI.C	Solve systems of equations.				
A1.A-REI.C. 5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.		Milgram-Another example of the same sort of thing, replacing the development of basic skills with generalities that aren't nearly as important.	No action necessary	
A1.A-EEI.C. 6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. Include problem solving opportunities utilizing a real-world context.	What just with graphs? Can't students solve approximately using tables? When I look at this standard I want to limit algebra 1 to just systems of two equations but is is still not clear and then I wonder where systems of three equations go. This standard needs to be compared to the grade 8 standard.	Milgram-Needs examples to clarify the level of the systems that are to be solved and the methods that might be used. (How many linear equations in how many variables, the types of reduction methods for solving these systems and the discussion of the kinds of things that happen when there are dependency relations among the equation, and so on.) Achieve-Typo: According to the ADSM Introduction the phrase should be, "utilizing a realworld context."	The standard intentionally does not limit the number of equations or variables that teachers may choose to use.	
	Represent and solve equations and inequalities graphically.				
A1.A-REI.D					
A1.A-REI.D. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve, which could be a line.	Still Common Core		General Comment. No action necessary.	

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.A-RE.D. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)$ $=\mathrm{g}(\mathrm{x})$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations." Focus on cases where $f(x)$ and/or $g(x)$ are linear, absolute value, quadratic and, exponential functions with integer exponents.	Still Common Core		Per Wurman \& Achieve suggestions: see Revised standard According to the definition of mathematical modeling on page 18 of the introduction, modeling is not necessary for this standard but could be included at a teacher's discretion. Our revision intentionally removed the modeling statement as it is not always applicable. Per Milgram's suggestions, examples will be included in the supporting materials.	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately (e.g., using technology to graph the functions, make tables of values, or find successive approximations). Focus on cases where $f(x)$ and/or $g(x)$ are linear, absolute value, quadratic, and exponential functions. with integer exponents.
A1.A-RE.D. 12	Graph the solutions to a linear nequality in two variables as a halfplane, excluding the boundary in the case of a strict inequality, and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding halfplanes.	Not clear to the number of equations in the system Still Common core	Milgram-As happens far too often in these standards, this one cuts the situation down to the most elementary cases possible. At least one case where one has three inequalities in two variables with a non-trivial solution region should be included	The standard intentionally does not limit the number of equations or variables that teachers may choose to use	
Functions (F)					
Interpreting Functions (F-IF)					
A1.F-IF.A	Understand the concept of a function and use function notation.				
A1.F-F.F.A. 1		I think this is going to promote only calculations. This should talk more about a relationship in which two quantities that vary simultaneously such that one quantity uniquely determines another quantity I think that this will allow students to be able to conceptualize the idea of a function being an infinite collection of points that follow a specific rule. Still Common core	Milgram-This is not a standard as it stands. It is a definition. What is needed are examples of the kinds of problems that would be appropriate to test this "standard."	Per Milgram's suggestion, examples will be included in the support material	
A1.F-IF.A. 2	Use function notations, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.$\|$	Common Core	Milgram-Again, there must be examples for this "standard." Virtually all the obvious ones that I am aware of are entirely trivial or far too difficult for ninth grade students. Achieve-AZ changed function notation to "function notations." Is the plural intentional? If so, which notations beyond that in A1.F-IF.A. 1 are expected?	Per Milgram's suggestion, examples will be included in the support material Per Achieve's suggestion: thanks for the edit!	Use function notation, Evaluate a function for inputs in the domain, and interpret statements that use function notation in terms of a context.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workroup Notes	Redline/Final Mathematics Standard 12/2016
A1.F-IF.A. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	**।'d recommend clarification as exponential and logarithmic functions can be defined recursively while linear and polynomial functions being defined recursively is not always useful as those functions are additive. **Sequences need more context. Please explain how recursive sequences would fit into function interpretations. Is there a standard in Algebra 1 on sequences and series? **There needs to be a little more here. This is the first formal introduction to sequences. Either more support needs to be given as to what to teach students here or more scaffolding needs to be given to teachers in the standards. This standard is almost too general. Maybe sequences only belongs in algebra 2?	Milgram-Without the example, this becomes essentially meaningless, entirely trivial, or far too difficult for Algebra I. Also, it is worth noting that Algebra I students generally find recursion very, very difficult. I would probably put this standard into Algebra II, which would almost surely be a better course to have recursion in it. Wurman-The example definitely promoted clarity and should be restored.	Per Milgram \& Wurman's suggestion, examples will be included in the support material Per the public comments, examples/supports will be provided in the support materials.	
A1.F-IF.B	Interpret functions that arise in applications in terms of the context		Milner-In A1.F-IF.B there is a contradiction of sense between "intervals where the function is increasing" and "exponential (functions) with integer exponents" since the former require the function to be defined over some interval while the latter precludes that		
A1.F-IF.B. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantitises, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities 苂ilizing a real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums. Focus on linear, absolute value, quadratic, and exponential with integer exponents and piecewise-defined functions. (limited to the aforementioned functions).	Why include problem solving opportunities in this standard. There are other standards that will use this skill that are "real world". Reading this standard is awkward. Still Common Core	Milgram-As with other standards here, this standard focuses on the most trivial aspects on one of the deepest areas in most Algebra I courses. Rather than developing any real skills, one of the deepest areas in most Algebral courses. this standard is satisfied by elementary hand-waving. Achieve-AZ adds the requirement to apply functions to real-world contexts and limitations for Alg 1. By adding "include problem solving," AZ makes measurability more difficult.It is not clear why work with exponential functions in Alg 1 would be limited to functions with integer exponents. Since exponential functions have variable exponents, is it the intent that the computations should only include integer exponents? Or that functions are discretely defined only at integer inputs? This may be an error to be corrected or clarified.AZ's inclusion of graphs of rational functions seems to require the expectation in F-IF.7d (+). Are graphs of rational functions a part of Alg 2 in AZ? They are not included in the AzMERIT specifications.Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context." See earlier comments on using "focus" and "extend" in a standard.	Per technical review, please see the revised standard.	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums Focus on linear, absolute value, quadratic, and-exponential with integerexponents and piecewise-defined functions (limited to the aforementioned functions).
A1.F-IF.B. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes	Common core	Wurman-The example definitely promoted clarity and should be restored. Achieve-lt is not clear why work with exponential functions in Alg 1 would be limited to functions with integer exponents. Since exponential functions have variable exponents, is it the intent that the computations should only include integer exponents? Or that functions are discretely defined only at integer inputs? This may be an error to be corrected or clarified.It seems like there should be an Alg 2 version of this CCSS, since it represents an important skill related to all function types. While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).	Per Wurman's comment, examples will be included in support mateirals Per Achieve's comment, this appears to be a duplicate comment from the previous standard	

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.F-IF. B. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Include problemsolving opportunities utilizing a realworld context. Focus on linear, absolute value, quadratic, and exponential with integer exponents.	Commo	Miliner-Concerning average rate of change, A1.F-IF.B. 6 and A2.F-IF.B.6, most teachers and monumental step forward if the concept were specifically mentioned as as standard ("Change of a quantity is a difference between two values of the quantity"). Similarly, introduce the concept of rate of change of two variables that are related to each other and co-vary (vary together) from the words in the name: rate is a ratio (or quotient); if u and v are co-varying variables, the rate of change of u with respect tov as u varies from $u 1$ to u 2 and varies from $v 1$ to $v 2$ is the ratio of their changes, that is $(u 2-u 1) /(v 2-v 1)$. Achieve-AZ includes detail to define differences in Alg 1 and Alg 2.1 It is not clear why work with exponential functions in Alg 1 would be limited to functions with integer exponents. Since exponential functions have variable exponents, is it the intent that the computations should only include integer exponents? Or that functions are discretely defined only at integer inputs? This may be an error to be corrected or clarified.Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context."	Per Milner's comment, examples will be in the support materirals. Per Achieve's comment, see the revised standard	Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) over a specified on a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world context. Focus on linear, absolute value, quadratic, and exponential functions. with integer exponents.
A1.F-IF.C	Analyze functions using different representations.				
A1.F-IF.C. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases Functions include linear, exponential with integer exponents, quadratic, and piecewise-defined functions	I think square root and cube root still need to be included here. Important foundational knowledge for geometry. **is end behavior a key feature? This comment is also for A1.F-IF.B. 4	Milgram-This is another difficult situation. I agree that examples (c), (d), (e) are inappropriate given the quality of the preceding standards, but (a) and (b) are essential to the standard. Without these limiting examples, the standard could mean anything Achieve-lt is not clear why work with exponential functions would be limited to functions with integer exponents in Alg 1. Since exponential functions have variable exponents, is it the intent that the computations should only include integer exponents? Or that functions are discretely defined only at integer inputs? This may be an error to be corrected or clarified.	This standard is extended in Algebra II to include square root and cube root functions (A2.F-IF.C.7) and the graphing of these functions is purposefully left out of Algebra I. However, evaluating square roots and cube roots is an 8th grade standard (8.EE.A.2) which is a more direct support for the Geometry standards Per Milgram's comment, examples will be included in the support materials. Per Achieve's comment, see the revised standard Per the public comment, end behavior is an Algebra II concept.	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Functions include linear, exponential with intererpenents, quadratic, and piecewise-defined functions (limited to the aforementioned functions).
A1.F-IF.C. 8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square of a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	Once again, get rid of completing the square. Students do not have to use completing the square to show zeros, symmetry, max/min,or interpret a graph. Students are better off spending more time with less formulas so they really understand and use those formulas with ease. That way when they get to Algebra 2 they remember the formulas from Algebra 1 and are ready for the next formulas (ie. completing the square)	Wurman-As already mentioned, allowing exponential functions but limiting the exponents to integers is wrong headed. Sub-standard (b) should be restored.	Sub-standard (b) was moved to Algebra II	

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.-F-IF.C. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).Focus on linear, absolute value, quadratic, exponential with integer exponents and piecewisedefined functions (limited to the aforementioned functions).	I think square root and cube root still need to be included here. Important foundational knowledge for geometry. **Get rid of this standard all together or completely re-work how it is taught and tested. The only reason it is a standard is because Arizona was going to give the PARCC test and this was on it. This is a standard, that when teachers run out of time they do not teach. Teachers figure the students can figure it out from what they know already about the different functions. It goes horribly wrong most of the time.	Achieve-As mentioned eariier, AZ needs to clarify what "exponential [functions] with integer exponents" means.	Per Achieve's comment, see the revised standard	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).Focus on linear, absolute value, quadratic, exponential with integerexpenents and piecewise-defined functions (limited to the aforementioned functions).
Building Functions (F-BF)					
A1.F-BF.A	Build a function that models a relationship between two quantities.				
A1.F-EF. A. 1	Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from a context. Focus on linear, absolute value, quadratic, exponential with integer exponents, and piecewise-defined functions (limited to the	**The relationship between the quantities is not clear. **Detailed explanation on what the difference is between a explicit expression and a recursive process.	Milgram-The "examples" are far too general. Better examples are essential. Achieve-Clarification is needed regarding the intent of "exponential [functions] with integer exponents. AZ added detail to define differences between the two algebra courses. This is particularly true for exponential functions.Again, AZ uses "focus" and "extend" as the verbs for specifics in Alg 1 and Alg 2, respectively. These appear to be messages to the teacher as opposed to requirements for the students. While this is a modeling standard in the CCSS, it does not have the AZ connection to modeling in Alg 1. Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context.	Per Milgram's comment, examples will be given in a support materials Per the public comment, examples will be given in a support materials Per Achieve's comment, see the revised standard	Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from real-world context. Focus on linear, absolute value, quadratic, exponential with integer expenents, and piecewise-defined functions (limited to the aforementioned functions).
A1.F-BE.B	Build new functions from existing function				
A1.-F-B. B. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $\mathrm{f}(\mathrm{x}+\mathrm{k})$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology Focus on linear, absolute value, quadratic, exponential with integer exponents, and piecewise-defined functions (limited to the aforementioned functions).	$f\left(k^{*} x\right)$ is a very subtle transformation and difficult to see for even functions. Maybe this transformation should be moved to algebra 2. Students might better understand it after working with function compositions and having good procedural fluency with polynomial operations.	Milgram-This standard is again one that focuses on very formal aspects of functions. But unlike most of the previous topics this on is legitimately difficult, and, while far from basic, is very helpful in more advanced areas. In any case, it requires carefully thought out examples to clarify the kinds of questions that would be appropriate for it in Algebra I. Achieve-AZ provides more detail for the two algebra courses. It is not clear how exponential functions are being handled in the two courses. This needs clarity. See previous comments for more detail.	Per Milgram's comment, examples will be given in a supporting document Per the public comment, see the revised standard, which moves $f\left(k^{*} x\right)$ to an Algebra II concept.	
Linear, Quadratic, and Exponential Models (F-LE)					
A1.F-LE.A	Construct and compare linear, quadratic, and exponential models and solve problems.				

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.-F-LE.A. 1	Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant	would say that linear equations have a constant rate of change of y with respect to x. This means that $d y / d x=k$ where k is constant. This definition can be more useful. Likewise, exponential functions are growing by a constant factor such that $f(x+1) / f(x)=k$ where k is constant.	Milgram-This standards is all over the place. Some of it is entirely trivial, but much of it is far too advanced for Algebral. I recommend that it be deleted.		
A1.-F-E.A. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or input/output pairs.				
A1.-F-LE.A. 3	Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.		Milgram-Without careful preparation, Algebra I students will never be able to handle the mathematics involved. I recommend that the standard be deleted.		
A1.F-LE.B	Interpret expressions for functions in terms of the situation they model.				
A1.F-LE.B. 5	Interpret the parameters in a linear or exponential function with integer exponents in terms of a context.				Interpret the parameters in a linear or exponential function with integer exponents utilizing real world context. in terms of a context.
Conceptual Category - Statistics and Probability (S)					
Summarize, represent, and interpret data on a single count or measurement variable. (S-ID)					
A1.S-ID.A	Summarize, represent, and interpret data on a single count or measurement variable.		Milgram-The remaining standards should all be deleted.		
A1.S-ID.A. 1	Represent data with plots on the real number line (dot plots, histograms, and box plots).	Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know.	Achieve-AZ attempts to add more detail about the intended purpose of data representation in an effort to lift this standard past the middle school version in 6.SP.4. However, clarity is needed in the additional statement. Comparison would be between two sets of data rathe than comparing statistics. It would make more sense to say, "... for the purpose of comparing two or more data sets."	Per Achieve's comment, see the revised standard	Represent real-value data with plots on the real number line (dot plots, histograms, and boxplots) for the purpose of comparing two or more data sets.

Coding	Draft Plus standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workroup Notes	Redline/Final Mathematics Standard 12/2016
A1.S-ID.A. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	**Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know. **Does this include students being able to calculate the standard deviation from data sets?		Per public comment, examples will be given in support materials.	
A1.S-ID.A. 3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	**Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know. **Are students expected to calculate statistical measures? Which ones?	Achieve-The purpose of the AZ addition is not clear here. The placement of the parentheses makes it appear in the AZ version that "data sets" are equivalent to the three types of plots. Also, it is not clear why they have included these three types of representations in this interpretation requirement. Are these the only displays included in the requirement? Why would a visual display be required at all?	Achieve's comment doesn't align to the draft standard - no action necessary	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extremedata points-outliers if present.
A1.S-ID.B	Summarize, represent, and interpret data on two categorical and quantitative variables.				
A1.S-ID.B. 5	Summarize categorical data for two categories in two-way frequency tables Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data	Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know.			Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data, including joint, marginal, and conditional relative frequencies. Recognize possible associations and trends in the data.
A1.S-ID.B. 6	Represent data on two quantitative variables on a scatter plot, and describe how the quantities are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Focus on linear models. b. Informally assess the fit of a function by plotting and analyzing residuals.	**Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know. **Define how much residual knowledge should be known. **Part B: Is this going to be done with statistical software? Also I feel that analyzing residuals should be moved out of Algebra 1 standards. **How appropriate is analyzing and plotting residuals for freshmen? This seems like a higher math level standard.		Per public comment, examples will be given in support materials.	
A1.S-ID.C	Interpret linear models.				
A1.S-ID.C. 7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.				Interpret the slope as a rate of change and the intercept constant term of a linear model in the context of the data.

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.S-ID.C. 8	Compute and interpret the correlation coefficient of a linear fit.	Is the computation done with the use of calculators or statistical software?	Achieve-AZ removed "using technology," which indicated the skill is to use the calculator, and that such computations, by hand, are not the intention. The emphasis in the CCSS is to teach the ability to use the calculator as a tool.	Per the Achieve and public comment, the use of technology as a tool is inherent in the standard via Mathematical Practice Standard 5	Compute and interpret the correlation coefficient of a linear fit. relationship.
A1.S-ID.C. 9	Distinguish between correlation and causation.	Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know.			
Conditional Probability and the rules of Probability (S-					
CP)					
A1.S-CP.A	Understand independence and conditional probability and use them to interpret data.				
A1.S-CP.A. 1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	This standard should stay in Algebra 2 with the other probability standards. This standard does not allow for in depth probability exploration when separated from the rest of the probability standards in Algebra 2. **Unnecessary in algebra I **teaching subsets and sample space is not a small concept, given the number of standards in Algebra I, I believe these standards should remain in Algebra II **Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know.		Students first see compound probability in 8th grade (8.SP.B.1). Keeping A1.S-CP.A.1 in Algebra I maintains a progression that builds to the conditional probability concepts in Algebra II	Describe events as subsets of a sample space the set of outcomest using characteristics for categories) of the outcomes, or as unions, intersections, or complements of other events. ""or," "and," "not").
A1.S-CP.A. 2	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	This standard should stay in Algebra 2 with the other probability standards. This standard does not allow for in depth probability exploration when separated from the rest of the probability standards in Algebra 2. **Unnecessary in algebra I **Teaching conditional probability and rules for independent events is a large concept, given the number of standards in Algebra I, I believe these standards should remain in Algebra II. **Only here because it is on some state test. Does not fit with any of the other Algebra standards. We should not be teaching to some test the state decides students should be able to pass. We should be teaching what the need to know.		Students first see compound probability in 8th grade (8.SP. B.1). Keeping A1.S-CP.A.1 in Algebra I maintains a progression that builds to the conditional probability concepts in Algebra II	Use the Multiplication Rule for independent events to understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
SMP	Standards for Mathematical Practice				

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.MP. 1					
A1.MP. 2					
A1.MP. 3					

Coding	Draft Plus Standards - as of 8/2016	Public Comment-Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
A1.MP. 4					
A1.MP. 5					
A1.MP. 6					

${ }^{\text {coding }}$	Dratt Plus Standards -as of $8 / 2016$	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Rediline/Final Mathematics Standard 12/2016
A1.MP. 7	Look for and make use of structure. Mathematically proficient students use structure and patterns to provide form and stability when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective				
A1.MP. 8					

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
	hool Geometry		Carlson-l applaud the fact that you have retained a focus on transformations as the foundation of congruence and similarity in Geometry. Similar to my comments for Algebra I and Algebra II, I believe that removing the examples was a mistake. I think the standards would benefit from multiple examples for EVERY standard. It seemed as if you found the inclusion of examples restricted the interpretation of the standard to only problem types like the given examples. I can understand that, but removing the examples creates a problem relative to your question G : "Are the standards written with clear student expectations that would be interpreted and implemented consistently across the state?" I am sure that the original purpose of including examples was to help ensure that the standards were interpreted in similar ways by all schools and by those creating the tests. Removing the examples makes it more likely that a variety of interpretations will exist (including those inconsistent with the intentions of the standards authors). Therefore, I recommend including several examples of questions where each standard would apply (at least 3) so that everyone reading the standard understands its purpose in similar ways but also sees the variety of ways in which the standard can be applied so that the examples do not create an overly narrow interpretation. Moving the equations of conic sections to the plus standards was an excellent choice as it does not belong in Geometry, and is also not a necessary learning goal for standard Algebra 2 students.		
			Carlson con't- G.G-CO.B.6: I made a comment about the definition of rigid motion for the glossary section, but I will repeat it here (because it needs to be beefed up), as well as make the case that the definition of rigid motion should be written out in the standard specifying exactly what students should learn about it. A rigid motion is a transformation that maps points to points, lines to lines, line segments to line segments with the same length (and thus preserves the distances between two points and their image points), rays to rays, and angles to angles of the same measure. The definition in the glossary only talks about preserving lengths and angle measures, but without the full definition you lose a lot of the rigor of proofs based on transformation arguments. For example, you can rigorously justify the vertical angle theorem using transformations only if you establish that a 180 degree rotation of a line using any point on the line as the center of rotation maps the line onto itself. Doing this for the two intersecting lines (using the intersection point as the center of rotation) ensures that the vertical angles map onto one another, which means that they have the same measure (since angle measure is preserved). It isn't quite enough to only say that lengths and angle measures are preserved for a rigorous proof. Abercrombie-The instances of rewording in these standards (e.g. G.G.-SRT.B.5) place emphasis on conceptual mathematical thinking required, which is an improvement in the standards. Moving G.G-GPE.A. $2 \& .3$ to the plus standards is a sound decision, as this material seems beyond the depth and breadth of the rest of the Geometry standards. All standards are measurable, describe breadth and depth of content, demonstrate horizontal and vertical alignment, and are eaily interpretable.		
Number and Quantity (N)					
Quantities ($\mathrm{N}-\mathrm{Q}$)			Wurman-These standards don't really belong in Geometry		
G.N-Q.A	Reason quantitatively and use units to solve problems.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016
Geometry

G.N-Q.A. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	How about 1. Use units as a guide to understanding problems, choose and interpret units in formulas, choose and interpret the scale in graphs. **All of this can be incorporated into other standards. These are not stand alone topics. As students learn different formulas, graphs, ect they can be taught how units will help then understand the problem better.	Milgram-Examples needed	See revised standard	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays, include utilizing real-world context.
G.N-Q.A. 2	Define appropriate quantities for the purpose of descriptive modeling. Include problem solving opportunities utilizing real-world context.	2. Define appropriate quantities when modeling and include "real world" problems. **This seems very low for high school students. They should already know appropriate quantities. This should be removed. **This standard needs more clarification. **Need a better description of this standard. **Not sure what this means for geometry> From PARCC "For example, in a situation involving periodic phenomena, the student might autonomously that amplitude is a key variable in a situation, and then choose to work with peak amplitude" Need some support for this standard in a geometry setting.	Milgram-Examples needed	See revised standard	Define appropriate quantities for the purpose of descriptive modeling. Include problem-solving opportunities utilizing realworld context.
G.N-Q.A. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	**Again, too low for high school students. They should already know reasonableness and limitations when working with quantities. **Is this only for real world situations? For mathematical situations we want exact values.	Milgram-Examples needed Achieve-The limitations for the three required courses are not clear in these AZ standards.		Choose a level of accuracy appropriate to limitations on measurement when reporting quantities utilizing realworld context.
Geometry (G)					
Congruence (G-CO)					
G.G-CO.A	Experiment with transformations in the plane.				

G.G-CO.A. 1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	How about 1. Know precise definitions of segment, ray, angle, polygon (triangle, quadrilateral, etc.), circle, perpendicular, and parallel based on the undefined terms of point, line, and plane. **Is distance around a circular arc referring to circumference? **Geometry emphasizes an understanding of the attributes and relationships of geometric objects which can be applied in diverse contexts - interpreting a technical drawing, estimating the amount of wood needed to frame a house, or drawing computer graphics. There are many types of geometry but school mathematics is devoted primarily to plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates).		The suggested rewording limits the scope and intent of the standard.	
G.G-CO.A. 2	Represent and describe transformations in the plane as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not.	How about 2. Describe transformations as functions that take points in the coordinate plane as inputs and give other points in the coordinate plane as outputs. Recognize translations, reflections, and rotations as rigid motions and dilations as non-rigid motions. **Although transformations are important they are not the main focus of Euclidean geometry, but instead are a visual and special method of understanding the theorems and postulates of geometry. I believe Arizona's standards are over emphasizing transformations to the exclusion of virtually other approach.	Milgram-As stated, this is far too general. It also, actually, consists of multiple standards. First, there are "geometric transformations" in geometry. These are transformations that preserve length (though defined in this way they are hard to work with, so they are usually defined at the high school level as transformations that preserve length and angles). These transformations preserve congruence. Second, there are transformations that preserve similarity. These are the transformations that preserve area, though, again, this is an advanced definition. In high school they are usually defined as transformations that multiply length by a fixed positive real number and preserve angles. Third, there are transformations that do not preserve either length or area. They are NOT GEOMETRIC, so should not really be discussed much, if at all, in a geometry course. Wurman-Clarity? The original attempted (a) instill the sense of representation of transformations using aids such as transparencies or software, and then (b) treat them as functions. The supposedly clearer results simply dropped (a) and just focused on (b). Myopic.	The suggested rewording limits the scope and intent of the standard. Per Milgram and Wurman's comment, examples and guidance will be included in the support material.	
G.G-CO.A. 3	Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	How about 3. Use reflection and rotation symmetry, to describe the transformations necessary to map a figure onto itself.	Milgram-Be clearer about whether trapezoids are general, since the general trapezoid has NO such geometric transformations except the identity, but some non-rectangular trapezoids do have a non-identity symmetry.	The suggested rewording expands the scope beyond the intent of the standard and complicates the measurability of this standard Per Milgram's comment, terms in this standard (especially Trapezoid) will be rigorously defined in the glossary.	
G.G-CO.A. 4	Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	How about 4. Determine definitions of reflections, rotations, and translations. **Reflections and rotations each explain a particular type of symmetry, and the symmetries of an object offer insight into its attributes, as when the reflective symmetry of an isosceles triangle assures that its base angles are congruent.	Milgram-"Develop" is not testable without a huge amount of effort.	The suggested rewording is addressed in the standards under 8.GA Per Milgram's comment, assessment takes many forms and we believe this can be assessed in the classroom	

2016 Final Arizona Mathematics Standards - Reline Version - December 2016 Geometry

G.G-CO.A. 5	Given a geometric figure and a rotation, reflection, or translation draw the transformed figure. Specify a sequence of transformations that will carry a given figure onto another.	How about 5. Given a pair of congruent figures, specify a series of transformations that will map the one onto the other. **Similarity transformations (rigid motions followed by dilations) define similarity, formalizing it as "same shape" and "scale factor". These transformations lead to the criterion for triangle similarity that two pairs of corresponding angles are congruent	Milgram-Be more precise. There are an uncountable number of "transformations" that will do this for ANY geometric figure. I think it is necessary to replace "transformations" by "geometric transformations." Wurman-Like in A. 2 above, a truncated mis-interpretation.	The suggested rewording limits the scope and intent of the standard.	Given a geometric figure and a rotation, reflection, or translation draw the transformed figure. Specify a sequence of transformations that will carry a given figure onto another.
G.G-CO.B	Understand congruence in terms of rigid motions.				
G.G-CO.B. 6	Use geometric definitions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	How about 6. Given two figures, show that they are congruent by finding a series of rigid motions (reflections, rotations, and/or translations) that will map one onto the other. **Split this into 2 parts; Part 1:Use geometric definitions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; Part 2:given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. **During high school, students begin to formalize their geometry experiences from elementary and middle school, using more precise definitions and developing careful proofs. The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation. Fundamental to this study are the rigid motions: translations, rotations, reflections, and combinations thereof. All are assumed to preserve distance and angle measure (and therefore shapes).	Milgram-.Limit by specifying the types of figures under consideration. Achieve-AZ changed "descriptions" to "definitions." This overlaps with G-CO.A.4.	This is an almost identical re-wording of standard 8.GA. 2 Per Achieve's comment, this change was intentional to indicate that G-CO.A. 4 has students develop their definitions of rigid motions, where this standard has them formalize and apply these definitions. Per Milgram's comment, the standard was purposefully drafted without specific figure limitations	
G.G-CO.B. 7	Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	**How about 7. Use the definition of congruence in terms of rigid motion to show that two triangles are congruent. Two geometric figures are defined to be congruent if there is a sequence of rigid motions that carries one onto the other. For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. Once the triangle congruence criteria (SSS, SAS, ASA, and AAS) are established, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures. In advanced classes the SSA congruence	Migram-As stated, this is extremely difficult to do correctly. It should be limited by indicating the types of information that students should assume known.	Per Milgram's comment, examples and guidance will be provided in support material	

G.G-CO.B.8	Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	8. Use the triangle congruence criteria of $\mathrm{SSS}, \mathrm{SAS}, \mathrm{ASA}$, and AAS to prove triangles congruent. Limiting 7 and 8 to just transformations in not formalizing geometry. Transformations as a formal method of proof is limited to SSS. To use it for the others requires some method of assuring that the angles have the same measure which cannot be guaranteed by measuring with a protractor. **Need to add all the other ways triangles are similar, for example HL (hypotenuse leg), and AA should be here as well. Do all triangle similarities at the same time, one right after another. **Where will AAS and HL fit into the standards?	Milgram-As stated, this is extremely difficult to do correctly. It should be limited by indicating the types of information that students should assume known.	Per Milgram's comment, examples and guidance will be provided in support material. Per the public comments, see the revised standard.	Explain how the criteria for triangle congruence (ASA, AAS, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
G.G-CO.C	Prove geometric theorems.				
G.G-CO.C. 9	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	Why not list all the appropriate theorems, I don't want to guess which are to be stressed and which are not important. **CCSS high school math standards remove the teaching of geometry proofs. Teaching geometry without proofs is impossible!	Milgram-This is a good, well stated standard but it would benefit from a description of the things that students should assume.	The standard explicitly includes the theorems that are to be emphasized - any additional theorems are a curricular decision. Per Milgram's comment, examples and guidance will be provided in support material	
G.G-co.c. 10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangle are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	Same here, list all that are important, don't make people guess. **Break into 2 parts Part 1: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent--that is easy and quick Part 2: the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; and the medians of a triangle meet at a point.--this is more complicated and takes longer for the students to grasp.	Milgram-This is a good, well stated standard. But see the comment on the standard directly above.	The standard explicitly includes the theorems that are to be emphasized - any additional theorems are a curricular decision. Per Milgram's comment, examples and guidance will be provided in support material	
G.G-co.c. 11	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and rectangles are parallelograms	Again, list all appropriate theorems.	Milgram-see comments directly above. Achieve-By removing "conversely," AZ has made the standard more clear.	The standard explicitely includes the theorems that are to be emphasized - any additional theorems are a curricular decision. Per Milgram's comment, examples and guidance will be provided in support material	

2016 Final Arizona Mathematics Standards - Reline Version - December 2016 Geometry

G.G-CO.D	Make geometric constructions.		Milner-In G.G-CO.D it is imperative that geometric constructions are presented also as theorems that need to be proved. For example, the method for bisecting an angle needs a proof before it can be accepted as actually bisecting it.		
G.G-CO.D. 12	Make formal geometric constructions with a variety of tools and methods. Constructions include: Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	Make formal geometric constructions with a variety of tools and methods.--This should be done with patty paper or with a computer program. No one in the real world does constructions by hand. The textbook I use has a real world video for constructions and the man in that even says everyone uses a computer program. Only those few that want to write those programs need to know how to do this.	Milgram-see comments directly above.	Per Milgram's comment, examples and guidance will be provided in support material	Make formal geometric constructions with a variety of tools and methods. Constructions include: copying segments; copying angles; bisecting segments; bisecting angles; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructima line parallel to a given line through a point not on the line.
G.G-CO.D. 13	Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	**Spend what too much time teaching how to do this with no why to back it up. Again, only do this if there is a computer program for it. Or better yet remove this standard and let the engineering and drafting (on computer) classes teach this. **Constructing a hexagon inscribed in a circle serves no practical purpose for a sophomore level student. **। feel that constructing a hexagon goes above and beyond what students need to accomplish at the sophomore level. **Need to add "with a variety of tools and methods" to match G.G-CO.D	Milgram-see comments above.	Per Milgram's comment, examples and guidance will be provided in support material Per the public comments, see the revised standard	Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle; with a variety of tools and methods.
Similarity, Right Triangles, and Trigonometry (G-SRT)					
G.G-SRT.A	Understand similarity in terms of similarity transformations.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016 Geometry

G.G-SRT.A. 1	Verify experimentally the properties of dilations given by a center and a scale factor: a. Dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	How about 1. Verify experimentally the properties of dilations. A dilated segment is parallel to the original segment. The dilation of a segment is shorter or longer than the segment in the ratio given by the scale factor. Apply center and scale factor to a given geometric figure to create a similar figure.	Milgram-What does one mean by "verify experimentally?" Are students expected to use technology? If not, what are they expected to use?	The suggested rewording alters the intent of the standard. The original standard focuses on verifying properties of dilations through experimentation leading to proofs of similar figures, while the suggested rewording narrows the focus to the skill of applying dilations to create similar figures. Per Milgram's comment, 'verify experimentally' is purposefully included throughout the geometry progression. Additional guidance and examples will be provided in the support materials.	
G.G-SRT.A. 2	Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	How about 2. Given a pair of geometric figures in the coordinate plane use similarity transformations to determine whether the figures are or are not similar. Define similar triangles as having corresponding angles congruent and corresponding sides proportional.	Milgram-Seems to be a repeat of standards above.	The suggested rewording changes the intent of the standard by narrowing its scope to the coordinate plane and reducing the level of rigor from 'explain' to 'define'.	
G.G-SRT.A. 3	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	Does this mean that SAS and SSS are not to be taught? **This should be with the other triangle similarity theorems (SAS, HL, SSS ect). Teach them all at once together. Make them all one standard and each similarity statement can be a different sub standard. **This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra.	Milgram-Seems to be a repeat of standards above.	Standard was revised to include SAS and SSS similarity as a bridge to trigonometry and to make the expectation explicit.	Use the properties of similarity transformations to establish the AA, SAS, and SSS criterion for two triangles to be similar.
G.G-SRT.B	Prove theorems involving similarity.				

G.G-SRT.B. 4	Prove theorems about triangles. Theorems include: an interior line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	What about 4. An altitude drawn to the hypotenuse of a right triangle divides the triangle into two right triangles which are similar to the original. Use this theorem to prove the Pythagorean Theorem. A line intersecting two sides of a triangle divides the sides proportionally if and only if it is parallel to the third side. An angle bisector of a triangle divides the opposite side into two segments whose lengths are proportional to the lengths of the other two sides. **This standard can not be taught without first teaching geometric proofs. Students need to be taught geometric proofs before they can prove theorems. Without learning geometric proofs, teaching geometry is pointless. The 2010 CCSS eliminated proofs. Failing to put them back into the standards is educational malpractice. **The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and with the Pythagorean Theorem, are fundamental in many real-world and theoretical situations. Just as the number line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two dimensions	Milner-In G.G-SRT.B. 4 the "conversely" should be explained rather than removed: it is meant to require that students learn the proof that if the other two sides are divided proportionally, then the lines are parallel. Achieve-AZ's addition makes the standard clearer.	The suggested rewording is describing performance objectives rather than a standard. Per Milner's suggestion, 'conversely' was left intact in the standard.	
G.G-SRT.B. 5	Use congruence and similarity criteria to prove relationships in geometric figures and solve problems utilizing real-world context.		Milgram-Too general as stated. Must have examples.	Per Milgram's comment, examples and guidance will be provided in support material	
G.G-SRT.C	Define trigonometric ratios and solve problems involving right triangles.				
G.G-SRT.C. 6	Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.		Milgram-"Understand" is not something that is easily tested, so this is, at best, a questionable standard. Leaving that aside, though, what properties of similarity are being used? It would seem to me that the SINGLE question here is very algebraic in nature: If $A / B=$ C / D and all four numbers are non-zero, then $A / C=B / D$, (multiply both sides by $B / C)$. Consequently, I wonder if this is not more appropriate for eighth grade, Algebra I, or Algebra II.	Per Milgram's comment, examples and guidance will be provided in support material	
G.G-SRT.C. 7	Explain and use the relationship between the sine and cosine of complementary angles.	Good standard.	Milgram-see comments above.	Per Milgram's comment, examples and guidance will be provided in support material	
G.G-SRT.C. 8	Use trigonometric ratios (including inverse trigonometric ratios) and the Pythagorean Theorem to find unknown measurements in right triangles in applied problems.	${ }^{* *}$ I need some clarity. Does "including inverse trigonometric ratios" mean using the reciprocal trig ratios (sec, csc, and cot) or does it mean using inverse trig functions? It seems you have mixed the two vocabulary terms. **Very appropriate in Geometry. **Thank you for including inverse trig ratios.	Milgram-This seems ok, given that you want to include aspects of trigonometry in the first year geometry course. On the other hand, I'm not so sure this is a good idea. Achieve-Inverse functions are an Alg 2 topic in AZ, possibly putting this requirement out of order. It is not clear whether the Geometry course typically comes before or after Alg 2 in AZ. While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context" per the ADSM Introduction (see page 18).	Per the public comments, the standards specify the inverse trigonometric ratios specifically, which are separate from the reciprocal trigonometric ratios. Additional examples and guidance will be provided in the support materials. Per Achieve's comment, see the revised standard.	Use trigonometric ratios (including inverse trigonometric ratios) and the Pythagorean Theorem to find unknown measurements in right triangles utilizing real-world context in applied problems.
Circles (G-C					
G.G-C.A	Understand and apply theorems about circles.				

G.G-C.A. 1	Prove that all circles are similar.	Not prove--Understand that all circles are similar.	Milgram-What assumptions are being made in order to prove this result? One way of doing this is to first CAREFULLY define circles of positive radius r as ALL POINTS IN THE PLANE HAVING A FIXED DISTANCE r FROM A GIVEN POINT c. Then, it can be argued that a translations followed or preceded by a dilation takes any circle to any other. But without such a definition of a circle, this standard is likely to be impossibly difficult for your normal student.	Per Milgram's comment, terms in this standard (especially Circle) will be rigorously defined in the glossary. Examples will be included in support material.
G.G-C.A. 2	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	Please be specific. The number of relationships here is quite vast. What is emphasized and what is not. **Break into 2 parts Part 1: Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; Part 2: the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	Milgram-Needs examples.	The standard explicitly includes the relationships that are to be emphasized - any additional relationships are a curricular decision. Per Milgram's comment, examples and guidance will be provided in the support material.
G.G-C.A. 3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	Constructing the these circles, is based on the concurrency of bisectors, which are not in the standards.	Milgram-Again, what properties are students expected to assume known here?	Constructing bisectors is included in the standards under G-CO.D.12. Per Milgram's comment, examples and guidance will be provided in the support material.
G.G-C.B	Find arc lengths and areas of sectors of circles.			
G.G-C.B. 5	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between degrees and radians.	Converting between degrees and radians is an additional concept which is not mandatory. The width of the standards is already significantly broad. This can easily be moved to Algebra II where a much more in depth discussion already occurs. **This standard would be easier to read if you had parts a. b. c. etc There is a lot of stuff here. Stuff that should be here.	Achieve-The AZ Geometry standard added conversion between degrees and radians. This makes the standard less focused and also makes it unrelated to the cluster.	Per Achieve's and the public comments, converting radians to degrees is introduced as a geometry standard (as opposed to an Algebra II standard) because the concept of a radian is rooted in the calculation for arc lengths of circles.
Expressing Geometric Properties with Equations (G-GPE)				
G.G-GPE.A	Translate between the geometric description and the equation for a conic section.		Milgram-Very difficult standard for students in geometry. Usually done in Algebra II or a more advanced course.	
G.G-GPE.A. 1	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	Completing the square to find the center and radius of a circle given by an equation in standard form is a complex algebra. This along with the study of the equations of parabolas, ellipses and hyperbolas are extremely complex and requires algebra skills above the level of geometry students. Conics have traditionally been a 2 nd semester standard in algebra II or pre-calculus.		Completing the square is firmly held knowledge from Algebra I, specifically standard A1.A-REI.B.4.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016 Geometry

G.G-GPE.B	Use coordinates to prove simple geometric theorems algebraically.				Use coordinates to prove simplegeometric theorems algebraically.
G.G-GPE.B. 4	Use coordinates to prove or disprove simple geometric theorems algebraically. Theorems Include: proving or disproving geometric figures given specific points in the coordinate plane; proving or disproving if a specific point lies on a given circle.	Wording here should be changed to "prove" instead of "prove and disprove". By definition, a theorem is a theorem because it is proved. It is impossible to disprove a theorem. **Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Dynamic geometry environments provide students with experimental and modeling tools that allow them to investigate geometric phenomena in much the same way as computer algebra systems allow them to experiment with algebraic phenomena	Milner-In G.G-GPE.B.4 "proving or disproving geometric figures" is meaningless. Also, "proving or disproving if a specific point lies on a given circle" should read "proving or disproving that a specific point lies on a given circle". Milgram-What is the world to the authors mean by "proving or disproving geometric figures?" Can't they manage to be at least reasonably precise? Achieve-This standard is mathematically problematic. This standard adds, "disprove simple geometric theorems" and "disproving geometric figures." By the definition a "theorem" cannot be disproved and disproving a figure makes no sense. In the CCSS, the examples ask that a theorem be used to disprove a condition or attribute. This is different from "disproving" the theorem.Also, the AZ version of the CCSS example may be construed to mean that only those two theorems are included. In the AZ final example, "disproving if..." should probably be "disproving that..."	The words 'prove' and 'disprove' are used to define the level of rigor involved in this standard However, the phrase 'theorem' was changed to 'relationship' to better represent the intent of the standard. Per Technical Review comments, see the revised standard	Use coordinates to algebraically prove or disprove simple geometric relationships theorems atgebraically. Theorems Relationships include: proving or disproving geometric figures given specific points in the coordinate plane; and proving or disproving if a specific point lies on a given circle.
G.G-GPE.B. 5	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems, including finding the equation of a line parallel or perpendicular to a given line that passes through a given point		Milgram-This is a more reasonable standard for this course and 10th grade geometry students than those above relating to conic sections.		
G.G-GPE.B. 6	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.		Milgram-see comment above		
G.G-GPE.B. 7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles.		Milgram-.No! put back the "e.g."ग!!	Per Milgram's comment, examples and guidance will be included in the support materials	
Geometric Measurement and Dimension (G-GMD)					
G.G-GMD.A	Explain volume formulas and use them to solve problems.				

G.G-GMD.A. 1	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.	**How about 1. Give an informal argument for the formulas for the circumference of a circle and area of a circle. Use Cavalieri's Principle to give an informal argument for the volume formulas of a cylinder and prism. Use experimental methods go give an informal argument for the volume formulas of a cone and pyramid. (+) Give an informal argument for the volume of a sphere should be optional. ** circumference of a circle, area of a circle--Those are not volume! They should not be under the volume standard. **Use dissection arguments, --what does this even mean? What do we want the student to do with this? **Calalieri's principle is unnecessary. It is easy logic. There is no teaching or learning behind it. It just makes sense. It should not be a standard. Maybe an embedded one at most, and a topic of discussion at least. **Needs more clarification. **। feel that dissection arguments and informal limit arguments go beyond what is necessary at the sophomore level.		The standard has been revised to promote clarity and measurability. References to the area and circumference of a circle were already addressed in 7th grade, specifically 7.G.B.4, and are now securely held knowledge	Give an informalargument for the formulas for the eircumference of a circle, area of a circle, volume of a eylinder, pyramid, and cone. Use dissection arguments, Gavalieri's principle, and informallimit arguments. Analyze and verify the formulas for the volume of a cylinder, pyramid, and cone.
G.G-GMD.A. 3	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems utilizing a real-world context.	Prisms should be included. Why is surface area not a part of the standards? Great standard.	Milner-In G.G-GMD.A. 3 the word "context" should be plural. Achieve-AZ added their modeling requirement to apply to a real-world context as suggested in the ASDM Introduction for standards that require modeling with mathematics.Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context."	Standards addressing the volume of prisms begin in 6th grade, specifically 6.G.A. 2 and continues through the middle school grades. Surface area is addressed in standard 7.G.B.6. Both of these are considered firmly held knowledge in high school	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems utilizing real-world context.
G.G-GMD.B	Visualize relationships between twodimensional and threedimensional objects.				
G.G-GMD.B. 4	Identify the shapes of twodimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of twodimensional objects.	Great applicable standard.			
Modeling with Geometry (G-MG)					
G.G-MG.A	Apply geometric concepts in modeling situations.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

G.G-MG.A. 1	Use geometric shapes, their measures, and their properties to describe objects	**Get rid of this and add Geometric probability. It goes along with standard G.G-MG.A.3. Applying geometric models to solve design problems. For example: how much space the cardboard tube in a roll of TP takes up? Or playing darts-what is the probability of hitting a certain area? **This standard is too vague. Specific examples would be appreciated. **This standard is too vague. Please define.	Milgram-Please, please, please, go back to the original formulation and put back the "e.g." Achieve-While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context" per the ADSM Introduction (see page 18).	Use geometric shapes, their measures, and their properties to describe objects utilizing real-world context.
G.G-MG.A. 2	Apply concepts of density based on area and volume in modeling situations	Density does not go or belong in Geometry. It is here because of a question or two on a state test. Leave it in Science. Add Geometric probability or scale drawing instead.	Milgram-see comments above. Achieve-While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context" per the ADSM Introduction (see page 18).	Apply concepts of density based on area and volume in modeling situations utilizing real-world context.
G.G-MG.A. 3	Apply geometric methods to solve design problems		Milgram-see comments above. Achieve-While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context" per the ADSM Introduction (see page 18).	Apply geometric methods to solve design problems utilizing real-world context.
G.SMP	Standards for Mathematical Practice			
G.MP. 1				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016 Geometry

G.MP.2	Reason abstractly and quantitatively Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.
G.MP. 3	Construct viable arguments and critique the reasoning of others. Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming, questioning, or debating the reasoning of others. They can listen to or read the

G.MP.4	Model with mathematics. Mathematically proficient students apply the mathematics they know to society, and the workplace Whe life, given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
G.MP. 5	Use appropriate tools strategically. Mathematically proficient students consider available tools when solving a mathematical problem. They choose tools that are relevant and useful to the problem at hand. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful; recognizing both the insight to be gained and their limitations. Students deepen their understanding of mathematical concepts when using tools to visualize, explore, compare, communicate, make and test predictions, and understand the thinking of others.
G.MP. 6	Attend to precision. Mathematically proficient students clearly communicate to others and craft careful explanations to convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016 Geometry

Coding	Draft Plus Standards - as of 8/2016	Public Comment- Fall 2016	Algebra 2 Technical Review - Fall 2016	Workgroup Notes	Redline/Final Mathematics Standard 12/2016
	Algebra 2 Standards		Carlson-I really appreciate the fact that the standards have been broken down by course ($\mathrm{A} 1, \mathrm{G}, \mathrm{A} 2$). This is a nice improvement in the standards. I encourage the writers to reconsider using examples to make more the intent of each standard more clear. In fact, I think the standards would benefit from multiple examples for EVERY standard. It seemed as if you found the inclusion of examples restricted the interpretation of the standard to only problem types like the given examples. I can understand that, but removing the examples creates a problem relative to your question G : "Are the standards written with clear student expectations that would be interpreted and implemented consistently across the state?" I am sure that the original purpose of including examples was to help ensure that the standards were interpreted in similar ways by all schools and by those creating the tests. Removing the examples makes it more likely that a variety of interpretations will exist (including those inconsistent with the intentions of the standards authors). Therefore, I recommend including several examples of questions where each standard would apply (at least 3) so that everyone reading the standard understands its purpose in similar ways but also sees the variety of ways in which the standard can be applied so that the examples do not create an overly narrow interpretation.		

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
Number and Quantity (N)					
The Real Number System (N-RN)					
A2.N-RN.A	Extend the properties of exponents to rational exponents.				
A2.N-RN.A. 1	Explain how the definition of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.	As long as in A1.N students have already simplified radicals.	Milner-A2.N-RN.A. 1 needs the example that was removed. Milgram-As usual, put in at least one example. Far too general as it stands. Achieve-The slight change in wording in the AZ causes no significant change in meaning or rigor.	Per Milner and Milgram's comment, examples will be included in supporting documents	
A2.N-RN.A. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Good! This is still common core standard.			
A2-N-Q.A	Reason quantitatively and use units to solve problems.				
A2-N-Q.A. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	**Need to determine the content limits from A1 to A2. Currently it is exactly the same. **Great standard but a bit complex to understand. Rewrite in a more comprehensible way. This is still common core standard.	Milgram-NEEDS EXAMPLES to bound the types of questions that will appear on tests of this standard. Achieve-While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).	See revised standard. Examples will be included in support documents.	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays, include utilizing real-world context.
A2.N-Q.A. 2	Define appropriate quantities for the purpose of descriptive modeling.	Need to include real-world context as well in A2, it is already included in A1.	Milgram-The example in the comments column (D) at least should be made part of the "standard." Without bounds the range of questions will be too broad. Achieve-The limitations and/or differences for the three required course are not clear in these AZ standards. In this case the "include" statement is redundant with the notion of descriptive modeling. Also, if the "utilizing real-world context" statement is important in AZ, why does Alg 2 not have the same additional statement, identifying it as a modeling standard.	See revised standard	Define appropriate quantities for the purpose of descriptive modeling. Include problem-solving opportunities utilizing real-world context.
A2.N-Q.A. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Demine timitations ana rorms of choosing level of accuracy. This is still common core standard. **ok.	Achieve-The limitations for the three required courses are not clear in these $A Z$ standards.		Choose a level of accuracy appropriate to limitations on measurement when reporting quantities utilizing real-world context.
A2.N-CN.A	Perform arithmetic operations with complex numbers.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
A2.N-CN.A. 1	Apply the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. Write complex numbers in the form ($a+b i$) with a and b real.	This is still common core standard.	Milgram-Much better as a standard than the original. (This may well be the first time I've seen an actual improvement in this column.)	No action needed	
A2.N-CN.C	Use complex numbers in polynomial identities and equations.		Milner-With the changes made, N-CN never defined complex numbers. In particular, the relation i2 $=-1$ makes no sense for students who "know" that squares are never negative.	Definition of complex numbers included in the glossary.	
A2.N-CN.C. 7	Solve quadratic equations with real coefficients that have complex solutions.	This is still common core standard.	Milgram-There should still be limits. What kinds of coefficients, integer, rational, or real? Use quadratic formula or not?	No action needed	

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
Algebra (A)					
Seeing Structure in Expressions (A-SSE)					
A2.A-SSE.A	Interpret the structure of expressions.				
A2.A-SSE.A. 2	Use the structure of an expression to identify ways to rewrite it. Extend polynomial expressions to multivariable expressions. Focus on rational or exponential expressions seeing that $\left(x^{2}+4\right) /\left(x^{2}+3\right) \text { as }\left(\left(x^{2}+3\right)+1\right) /\left(x^{2}+3\right)$ thus recognizing an opportunity to write it as $1+1 /\left(x^{2}+3\right) .$	This is still common core standard. ${ }^{* *}$ I agree with this standard. Fits algebra 2 curriculum and helps students expand their knowledge of expressions. **Please use correct mathematical notation when providing examples of division and/or fractions. There are many software or typesetting options in which to include proper notation such as MathType. It is important to correct mathematical notation.	Achieve-The two courses demonstrate their differences through the examples. It is not clear in Alg 1 whether "polynomial" expressions would be limited to degree 2. Typically we assume "polynomial" expressions include higher order. This is especially evident in the call to "extend polynomial expressions" in Alg 2.1 It is not clear if there is a specific reason for using "focus" in the additional notes in Alg 1 and "extend" as a verb in the AZ. Both appear to be instructions for the teacher as opposed to requirements for the student. "Extend" can read as a connector for someone reading from A1 to A2, but it can also mean that students are able to "extend" polynomial expressions. This should be made more clear	Per Achieve's comment, see the revised standard. Additional examples will be provided in the supporting document.	Use structure to identify ways to rewrite polynomial and rational expressions. Focus on polynomial operations and factoring patterns.
A2-A-SSE.B	Write expressions in equivalent forms to solve problems.				
A2.A-SSE.B. 3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. Include problem solving opportunities utilizing a real-world context and focus on expressions with rational exponents. c. Use the properties of exponents to transform expressions for exponential functions.	This is still common core standard.	Milner-A good example for A2.A-SSE.B. 3 may be e2t -2et + 1 = (et 1)2, to underscore that previously learned structures and concepts need now to be combined with newly learned ones. Milgram-There should be an example here. Achieve-AZ includes more detail about the expectations in Alg 2. While this is an identified modeling standard in the CCSS, the AZ version only includes the phrase, "utilizing a real-world context," in Alg 2. This would be needed in Alg 1, as well, per the ADSM Introduction (see page 18).	Examples will be included in support documents	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. Include problem-solving opportunities utilizing real-world context and focus on expressions with rational exponents. €. Use the properties of exponents to transform expressions for exponential functions.
A2.A-SSE.B. 4	Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.	This is still common core standard. What about sums of arithmetic sequences? Are students expected to use sigma notation? This standard might need some more pieces to it.	Milgram-As stated, probably a very poor standard. How do you test in a useful manner for "derive the formula?" But deleting the example was a poor idea. I would make the standard read "Use the quadratic formula to solve problems such as calculating mortgage payments on a fixed rate mortgage."	Examples will be included in support documents Per the public comment: sums of arithmetic sequences are not in the draft standards. The use of sigma notation is a curricular decision, but is not required by the standards.	
Arithmetic with Polynomials and Rational Expressions (A-APR)					
A2.A-APR.B	Understand the relationship between zeros and factors of polynomials.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.A-APR.B. 2	Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $(x-a)$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	**This is very unclear. It seems to be very strangely worded. It is talking about the Remainder Theorem and talking about factors of the polynomial, or zeroes of the function. I think this should be clarified. **। find this standard to be appropriate for algebra 2 students. Division with polynomials should be owned at this level.	Algebra 2 Milgram-It should be understood that this formula is very elementrary.	Per Public Comment, see the revised standard	Know and apply the Remainder and Factor Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $(x-a)$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
A2.A-APR.B. 3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Focus on quadratic, cubic, and quartic polynomials including polynomials for which factors are not provided.	Need to clarify if we are looking only at real zeros or complex zeros. Can we name the Fundamental theorem of algebra here? This is still common core standard.	Achieve-AZ provides limitations for Alg 2 that make it appear to be at a lower level than the unlimited Alg 1 requirement. An explanation may be needed to clarify the specific requirements for Alg 1.	No action needed	

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
A2.A-APR.C	Use polynomial identities to solve problems.				
A2.A-APR.C. 4	Prove polynomial identities and use them to describe numerical relationships.		Milner-In A2.A-APR.C. 4 it will be very unclear to teachers and students what is meant by "and use them to describe numerical relationships". Milgram-Must have examples to limit it. For example, what about polynomials in more than one variable?	Per Milner and Milgram's comments, examples will be provided in supporting documents	
A2.A-APR.D	Rewrite rational expressions.				
A2.A-APR.D. 6	Rewrite rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+$ $r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or for the more complicated examples, a computer algebra system.	This is still common core standard.	Milgram-.The last phrase "using inspection, long ... " is pure pedagogy. DELETE IT. Also, put back the word simple. Without it, the standard is way too general.	No action needed	
Creating Equations (CED)					
A2.A-CED.A	Create equations that describe numbers or relationships.				
A2.A-CED.A. 1	Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing a real-world context. Focus on equations and inequalities arising from linear, quadratic, rational, and exponential functions with real exponents.	This is still common core standard.	Milgram-Again, way too general. Must have examples. Achieve-Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context."	Per Milgram's comment, examples will be included in supporting documents. Per Achieve, see revised standard	Create equations and inequalities in one variable and use them to solve problems. Include problem solving opportunities utilizing real-world context. Focus on equations and inequalities arising from linear, quadratic, rational, and exponential functions with realexponents.
Reasoning with Equations and Inequalities (REI)					
A2.A-REI.A	Understand solving equations as a process of reasoning and explain the reasoning.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.A-REI.A. 1	Explain each step in solving an equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Extend from quadratic equations to rational and radical equations.	This is still common core standard.	Milgram-Probably the standard as written is far too difficult to test. Needs examples. Or even better, get rid of it. Of special concern is the second part: "extend from quadratic ..." which simply seems incomprehensible to me. Achieve-It is not clear whether by "extend" AZ intends that both linear and quadratic are required in Alg 1 . Then, in Alg 2 it is not clear whether quadratic equations are required or only rational and radical. If the former, how would rational expressions be an "extension" of quadratics? If so, how would that be explained mathematically?	Per Milgram's comment, examples will be included in supporting documents. Per Achieve, the phrase 'extend' is intentional for vertical alignment to indicate this standard directly connects to an Algebra I standard.	
A2.A-REI.A. 2	Solve rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	This is still common core standard.	Milgram-You can't be serious! PUT "simple" back, and give a limiting example. For example how large can the degree of the denominator be? Achieve-AZ removed "simple" as a limitation on rational and radical equations. They will need to indicate expected limits as these types of equations can be very demanding.	Examples will be included in supporting documents.	
A2-A-REI.B	Solve equations and inequalities in one variable.				
A2.A-REI.B. 4	Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.	This standard seems to best fit in algebra 1 where there is more emphasis on one-variable equations. This is still common core standard.	Milgram-Again there must be ways to limit this. See the many comments above.	Examples will be included in supporting documents.	Fluently solve quadratic equations in one variable. b-Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.
A2-A-REI.C	Solve systems of equations.				
A2.A-REI.C. 7	Solve a system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	This is still common core standard. Comparing algebra 1 to algebra 2 , systems of three equations seems to be missing and yet ADE tweeted and example showing a system of three equations as an 8th grade example. https://twitter.com/azedschools/status/7642690 72376819712	Milgram-The example is absolutely essential. Put it back!!	Examples will be included in supporting documents.	

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
A2-A-REI.D	Represent and solve equations and inequalities graphically.				
A2.A-REI.D. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include problems in a real world context. Extend from linear, quadratic, exponential with integer exponents to cases where $f(x)$ and/or $g(x)$ are polynomial, rational, exponential with real exponent, and logarithmic functions.	This is still common core standard.	Achieve-AZ added detail to define differences between the two algebra courses. It is not clear whether "focus on" means "limit to" or "include." See earlier comments on using "Extend" in a standard.It is not clear why work with exponential functions in Alg 1 would be limited to functions with integer exponents. Since exponential functions have variable exponents, is it the intent that the computations should only include integer exponents? Or that functions are discretely defined only at integer inputs? This may be an error to be corrected or clarified. While this is an identified modeling standard in the CCSS, the AZ Alg 1 version does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context."	Per Achieve's comment, see revised standard	Explain why the x-coordinates of the points where the graphs of the equations $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include problems in real-world context. Extend from linear, quadratic, and exponential functions with integerexpenents to cases where $f(x)$ and/or $g(x)$ are polynomial, rational, exponential with realexponent, and logarithmic functions.
Functions (F)					
Interpreting Functions (F-IF)					
A2.F-IF.B	Interpret functions that arise in applications in terms of the context.				
A2.F-IF.B. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing a real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Extend from linear, quadratic and exponential with integer exponents to include polynomial, radical, logarithmic, simple rational, piecewise-defined, sine, cosine, tangent, and exponential functions with real exponents.	This is still common core standard.	Achieve-AZ adds the requirement to apply functions to real-world contexts and limitations for Alg 1. By adding "include problem solving," AZ makes measurability more difficult.lt is not clear why work with exponential functions in Alg 1 would be limited to functions with integer exponents. Since exponential functions have variable exponents, is it the intent that the computations should only include integer exponents? Or that functions are discretely defined only at integer inputs? This may be an error to be corrected or clarified.AZ's inclusion of graphs of rational functions seems to require the expectation in F-IF.7d (+). Are graphs of rational functions a part of Alg 2 in AZ? They are not included in the AzMERIT specifications.Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context." See earlier comments on using "focus" and "extend" in a standard	Per Achieve's comment, see revised standard.	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Extend from linear, quadratic and exponential with integerexponents functions to include polynomial, radical, logarithmic, simple rational, piecewise-defined, sine, cosine, tangent, and exponential functions

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.F-IF.B. 6	Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing a real-world context. Extend from linear, quadratic and exponential with integer exponents to include polynomial, radical, logarithmic, rational, piecewise-defined, sine, cosine, tangent, and exponential functions with real exponents.	instead of continuous function, maybe consider a continuous interval. This is still common core standard.	Milner-Concerning average rate of change, A1.F-IF.B. 6 and A2.FIF.B.6, most teachers and students do not even understand the concept of "change" for a function. It would be a monumental step forward if the concept were specifically mentioned as a standard ("Change of a quantity is a difference between two values of the quantity"). Similarly, introduce the concept of rate of change of two variables that are related to each other and co-vary (vary together) from the words in the name: rate is a ratio (or quotient); if u and v are co-varying variables, the rate of change of u with respect to v as u varies from $u 1$ to $u 2$ and v varies from $v 1$ to $v 2$ is the ratio of their changes, that is ($u 2-\mathrm{u} 1) /(\mathrm{v} 2-\mathrm{v} 1)$. Achieve-AZ includes detail to define differences in Alg 1 and Alg 2.1 It is not clear why work with exponential functions in Alg 1 would be limited to functions with integer exponents. Since exponential functions have variable exponents, is it the intent that the computations should only include integer exponents? Or that functions are discretely defined only at integer inputs? This may be an error to be corrected or clarified.Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context."	Per Milner's comment, additional examples and guidance will be provided in supplemental resources Per Achieve's comment, see the revised standard	Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world context. Extend from linear, quadratic and exponential functions with integer exponents to include polynomial, radical, logarithmic, rational, sine, cosine, tangent, exponential, and piecewisedefined functions. with reanents.
A2.F-IF.C	Analyze functions using different representations.				
A2.F-FIF.C. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Functions include square root, cube root, polynomial, exponential with real exponents, logarithmic, sine, cosine, tangent and piecewise-defined functions.	This is still common core standard.	Milgram-Put back the limitations as described in (a), (b), and (c). Achieve-The requirements of AZ Plus overlaps with Alg 2, FIF.B.4. While this is an identified modeling standard in the CCSS, the AZ version does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).	Per Milgram's comment, the standard condensed (b) and (c) into a single standard while removing (a) because it is securely held knowledge from Algebra I. Per Achieve's comment: according to the definition of mathematical modeling on page 18 of the introduction, modeling is not necessary for this standard but could be included at a teacher's discretion. Our revision intentionally removed the modeling statement as it is not always annlicable	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Functions include square root, cube root, polynomial, exponential rith realexponents, logarithmic, sine, cosine, tangent and piecewisedefined functions.
A2.F-IF.C. 8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions and classify those functions as exponential growth or decay.		Milgram-PUT BACK EXAMPLES.	Per Milgram's suggestion, examples will be included in the supplemental material.	

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.F-IF.C. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Extend from linear, quadratic and exponential with integer exponents to include polynomial, radical, logarithmic, rational, piecewise-defined, trigonometric, and exponential functions with real exponents.	Milner-A2.F-IF.C. 9 needs clarification by example. Clearly the intention of the standard is not listing for the first function some of its properties and for the second function some of its properties and then mechanically say which ones are properties of both functions and which are properties of one but not of the other. Achieve-As mentioned earlier, AZ needs to clarify what "exponential [functions] with integer exponents" means.	Per Milner's comment, additional examples and guidance will be provided in supplemental resources Per Achieve's comment, see the revised standard	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions.). Extend from linear, quadratic and exponential functions with interents to include polynomial, radical, logarithmic, rational, piecewise-defined, trigonometric, and exponential functions with real exponents.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Building Functions (F-BF)			ra		
A2.F-BF.A	Build a function that models a relationship between two quantities.				
A2.F-BF.A. 1	Write a function that describes a relationship between two quantities. Extend from linear, quadratic and exponential with integer exponents to include polynomial, radical, logarithmic, rational, piecewise-defined, sine, cosine, and all exponential functions. Include problem-solving opportunities utilizing a real-world context. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine standard function types using arithmetic operations and function composition.	This is still common core standard.	Milner-In A2.F-BF.A. 1 the expression "standard function types" is used but never defined. It is imperative that the limits of this standard be explicit. Also, it is imperative that A2.F-BF.A.1a and A2.F BF.A.1b specifically direct to be applied both to mathematical and real-life situations. Milgram-.Far too general. Put in examples to limit it and show the kinds of questions that are meant to put into a test of this countent. Achieve-Clarification is needed regarding the intent of "exponential [functions] with integer exponents." F-BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context.* AZ added detail to define differences between the two algebra courses. This is particularly true for exponential functions.Again, AZ uses "focus" and "extend" as the verbs for specifics in Alg 1 and Alg 2 , respectively. These appear to be messages to the teacher as opposed to requirements for the students. While this is a modeling standard in the CCSS, it does not have the AZ connection to modeling in Alg 1. Typo: According to the ADSM Introduction the phrase should be, "utilizing a real-world context."	Per Milner and Achieve's comment, see the revised standard Per Milgram's comment, additional examples and guidance will be provided in supplemental resources	Write a function that describes a relationship between two quantities. Extend from linear, quadratic and exponential functions with integer exponents to include polynomial, radical, logarithmic, rational, piecewise-defined, sine, cosine, and all exponential functions. Include problem-solving opportunities utilizing real-world context. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. b. Combine sunction types using arithmetic operations and function composition.
A2.F-BF.A. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	What about sequences that are not arithmetic or geometric? Are those sequences only dealt with in the plus standards? This is still common core standard.	Achieve-AZ changes the wording slightly but the meaning is essentially the same. Sequences are introduced in Alg 1 in F-IF.3. Will AZ students make the connection between recognition of sequences and applying them with this distance between them? Would it make more sense to address F-BF. 2 in Alg 1? Or to include an Alg 2 version of F-IF. 3 in AZ? While this is an identified modeling standard in the CCSS, the AZ version removes the modeling indicator but does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).	Per Achieve's comment, additional examples and guidance will be provided in supplemental materials. According to the definition of mathematical modeling on page 18 of the introduction, modeling is not necessary for this standard but could be included at a teacher's discretion. Our revision intentionally removed the modeling statement as it is not always applicable.	
A2.F-BF.B	Build new functions from existing functions.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
A2.F-BF.B. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Extend from linear, quadratic and exponential with integer exponents to include polynomial, radical, logarithmic, rational, piecewise-defined, sine, cosine, and exponential functions with real exponents.	This is still common core standard.	Milgram-Algebra 1 and 2 and the need to address a limit between the two courses. TO PUT IT MILDLY, YOU HAVE NOT SUCCEEDED. THIS NEEDS TO HAVE MAJOR CHANGES MADE TO IT. IT IS VALUABLE , BUT FAR FROM ESSENTIAL, FOR STUDENTS TO SEE HOW THE KINDS OF TRANSFORMATIONS IN THE ORIGINAL STANDARD AFFECT FUNCTIONS. BUT IN ALGEBRA II STUDENTS CAN BE ASKED TO USE THESE TRANSFORMATIONS TO UNDERSTAND SOME FUNCTIONS, PARTICULARLY QUADRATIC FUNCTIONS. Achieve-AZ provides more detail for the two algebra courses. It is not clear how exponential functions are being handled in the two courses. This needs clarity. See previous comments for more detail.	Per Milgram's and Achieve's comment, Algebra Il extends the standard from Algebra I to include even and odd functions as well as horizontal dilations (after adjusting the Algebra I standard). See the revised standard.	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, \quad k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. Extend from linear, quadratic and exponential functions with integerenents to include polynomial, radical, logarithmic, rational, sine, cosine, and-exponential functions, with reat exponents. and piecewise-defined functions.
A2.F-BF.B. 4	Find inverse functions. a. Understand that an inverse function can be obtained by expressing the dependent variable of one function as the independent variable of another, recognizing that functions f and g are inverse functions if and only if $f(x)=y$ and $g(y)=x$ for all values of x in the domain of f and all values of y in the domain of g. b. Understand that if a function contains a point (a, b), then the graph of the inverse relation of the function contains the point (b, a) ; the inverse is a reflection over the line $y=x$.	Appreciate the additional language and clarification Appreciate the additional language and clarification Still common core	Milner-In A2.F-BF.B. 4 the inverse function is confused with its graph. Moreover, the deletion of the composition of a function with its inverse completely obscures the essential defining condition of inverse. Achieve-There is a problematic mathematical issue in part b. The statement, "the inverse is a reflection over the line $y=x$ " will only be true if the x-axis and y-axis quantities mean the same thing simultaneously - which would never happen in context.See the article "Inverse Functions: What Our Teachers Didn't Tell Us" written by Arizona educators (Mathematics Teacher, March 2011). There is also a need to improve precision in part b in that a GRAPH of the function, and not the function itself, contains the point (a, b)..."	Per Achieve's comment, see the revised standard	Find inverse functions. a. Understand that an inverse function can be obtained by expressing the dependent variable of one function as the independent variable of another, recognizing that functions f and g are inverse functions if and only if $f(x)=y$ and $g(y)=x$ for all values of x in the domain of f and all values of y in the domain of g. b. Understand that if a function contains a point (a, b), then the graph of the inverse relation of the function contains the point (b, a). the inverseis a reflection over the line $y=*$; c. Interpret the meaning of and relationship between a function and its inverse utilizing realworld context.
Linear, Quadratic, and Exponential Models (F-LE)					
A2.F-LE.A	Construct and compare linear, quadratic, and exponential models and solve problems.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.F-LE.A. 4	For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	This is still common core standard.	Milner-In A2.F-LE.A. 4 it should be specified that technology should be used to evaluate logarithms that are not readily found by hand or observation. Achieve-While this is an identified modeling standard in the CCSS, the AZ version removes the modeling indicator but does not include the phrase, "utilizing a real-world context," per the ADSM Introduction (see page 18).	Per Milner's comment, see the revised standard Per Achieve's comment: According to the definition of mathematical modeling on page 18 of the introduction, modeling is not necessary for this standard but could be included at a teacher's discretion. Our revision intentionally removed the modeling statement as it is not always applicable.	For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithms that are not readily found by hand or observation using technology.
A2.F-LE.B	Interpret expressions for functions in terms of the situation they model.				
A2.F-LE.B. 5	Interpret the parameters in an exponential function with real exponents in terms of a context.	Is this skill also stated in A2.F-IF.C.8 ?		Per the public comment, see the revised standard which emphasizes the real-world context	Interpret the parameters in an exponential function with realexponents utilizing real-world context in terms of a context.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.F-TF.C. 8	Prove the Pythagorean identity $\sin ^{2}(\theta)+$ $\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle.	This is still common core standard. **This should be moved to a fourth year mathematics course. It is my opinion that not every student in Arizona can be successful with this concept. **This should be moved to the plus standards. Not all students in the state of AZ will understand this type of proof at the level it deserves. Finding the sine, cosine, tangent, etc of angles in unit circle doesn't require this identity. Keep the skill but move the proof.		Per the public comment, the standard has been revised to emphasize using the Pythagorean identity to find other trigonometric values for a common angle.	Prove Use the Pythagorean identity $\sin ^{2}(\theta)+$ $\cos ^{2}(\theta)=1$ to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle.
Statistics and Probabily (\mathbf{S})					

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
Interpreting Categorical and Quantitative Data (S-ID)					
A2.S-ID.A	Summarize, represent, and interpret data on a single count or measurement variable.				
A2.S-ID.A. 4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	Appropriate standard for this level. This is still common core standard.	Milner-A2.S-ID.A. 4 needs to be rephrased from "...properties of a normal distribution to approximate a normal curve..." to "...properties of a normal distribution to approximate the given data by a normal curve..." Achieve-There are several differences in these two standards. AZ elected not to offer suggestions for tools to use in estimating the area under the normal curve. They added the requirement of nonsymmetric data and consideration of outliers. This appears to be more demanding than the CCSS counterpart.	The comment does not seem to match the standard - unsure how to address these comments	Use the mean and standard deviation of a data set to fit it to a normal curve, and use properties of the normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, or tables to estimate areas under the normal curve.
A2.S-ID.B	Summarize, represent, and interpret data on two categorical and quantitative variables.				
A2.S-ID.B. 6	Represent data on two quantitative variables on a scatter plot, and describe how the quantities are related. Extend to polynomial and exponential models a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or chooses a function suggested by the context.	This is still common core standard.	Milner-In A2.S-ID.B. 6 "chooses" needs to be "choose".	See revised standard	Represent data of two quantitative variables on a scatter plot, and describe how the quantities are related. Extend to polynomial and exponential models. a.Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context.
A2.S-ID.C	Interpret models.				

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.S-ID.C. 10	Interpret parameters of exponential models.	This is still common core standard. **Is this with regression? What parameters? **I don't know what this would look like in my classroom. This item needs more support material, such as a supplemental document with examples. I did a quick google search and could not find adequate information for this. We do not have textbooks at our school and there is no reference for this topic. **is this the same thing as A2.F-LE.B.5? Interpret the parameters in an exponential function with real exponents in terms of a context.	gra-2	Yes - this standard is referring to exponential regressions. This is a progression from the Algebra I standards A1.S-I.C.C. through A1.S-ID.C.9, which have students interpret linear models. In Algebra II, students are expected to extend this to exponential models.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Algebra 2					
Making Inferences and Justifying Conclusions (S-IC)					
A2.S-IC.A	Understand and evaluate random processes underlying statistical experiments.				
A2.S-IC.A. 1	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	This is another example of a cluster in isolation. If statistical experiments are going to be included, the other standards should have been left in here. HS.S-IC.B. 3 through HS.S-IC.B. 6 Having just tow standards for a topic goes against the spirit of the standards as currently written. I think you should either remove A2.S-IC.A. 1 and A. 2 or insert the other statistics standards that were removed in this draft. This is still common core standard. **Understand is a very generic term and hard to measure. This statement can be interpreted to mean a lot or very little. Please break apart this standard a little bit to make it more clear as to what students need to know at this level.	Milner-The language chosen for A2.S-IC.A. 1 is very poor: "making inferences to be made". CHANGE IT to good English usage.	Standards A2.S-IC.A. 1 and A2.S-IC.A. 2 provide the foundation for 4th year mathematics courses. The comment does not seem to match the standard - unsure how to address this comment	
A2.S-IC.A. 2	Explain if a specified model is consistent with results from a given data-generating process	This is another example of a cluster in isolation. If statistical experiments are going to be included, the other standards should have been left in here. HS.S-IC.B. 3 through HS.S-IC.B. 6 Having just tow standards for a topic goes against the spirit of the standards as currently written. I think you should either remove A2.S-IC.A. 1 and A. 2 or insert the other statistics standards that were removed in this draft. This is still common core standard. **Need more support material.	Achieve-AZ changed "decide" to "explain," increasing the rigor. Typo: The "if" in the AZ version should be "how," "whether," or "why."	Standards A2.S-IC.A. 1 and A2.S-IC.A. 2 provide the foundation for 4 th year mathematics courses. Per Achieve's comment, see the revised standard	Explain if whether a specified model is consistent with results from a given data-generating process
A2.S-IC.B	Make inferences and justify conclusions from sample surveys, experiments, and observational studies.			Included in Algebra 2 based on Workgroup and higher education input.	Make inferences and justify conclusions from samplestrveys, experiments, and observational studies.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.S-IC.B. 3	\|NEW			Included in Algebra 2 based on Workgroup and higher education input.	Recognize the purposes of and differences between designed experiments, sample surveys, experiments, and observational studies. explaim how randomization relates to each.
A2.S-IC.B. 4	NEW	Students should understand the notion of sampling variability-that different samples from the same population can give different estimates. Consider adding a reduced version of this standard to Algebra 2: "Use data from a sample survey to estimate a population mean or proportion; recognize that estimates are unlikely to be correct and the estimates will be more precise with larger sample sizes."		NEW - added based on public comment	Use data from a sample survey to estimate a population mean or proportion; recognize that estimates are unlikely to be correct and the estimates will be more precise with larger sample sizes.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

Conditional Probability and the Rules of Probability (S-CP)		Algebra 2			
A2.S-CP.A	Understand independence and conditional probability and use them to interpret data.				
A2.S-CP.A. 3	Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	This is still common core standard.	Achieve-The time gap between S-CP. 2 and S-CP. 3 seems large.	Per Achieve's comment, S-CP. 2 is securely held knowledge from Algebra I	
A2.S-CP.A. 4	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.	This is still common core standard.		General Comment. No action necessary.	
A2.S-CP.A. 5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.	This is still common core standard.			Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. utilizing real-world context.
A2.S-CP.B	Use the rules of probability to compute probabilities of compound events in a uniform probability model.				
A2.S-CP.B. 6	Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.	This is still common core standard.			Use Bayes Rule to find the conditional probability of A given B as the fraction of $B^{\prime} s$ outcomes that also belong to A, and interpret the answer in terms of the model.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.S-CP.B. 7		Apply the Addition Rule, $P(A$ or $B)=P(A)+$ $P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.			

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

SMP	Standards for Mathematical Practice
	Make sense of problems and persevere in
	solving them. Mathematically proficient students explain
	to themselves the meaning of a problem,
	look for entry points to begin work on the
	problem, and plan and choose a solution pathway. While engaging in productive
	struggle to solve a problem, they
	continually ask themselves, "Does this make sense?" to monitor and evaluate
	their progress and change course if
	necessary. Once they have a solution, the
	look back at the problem to determine if
	\|the solution is reasonable and accurate.
	their solutions to problems using different
	methods, approaches, or representations.
	They also compare and understand different representations of problems and
	different representations of problems and different solution pathways, both their
	own and those of others.
A2.MP. 2	
	Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships
	in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They
	decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to
	access the meaning of the numbers, the units, and the operations that the symbols
	represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.MP. 5	Use appropriate tools strategically. Mathematically proficient students consider available tools when solving a mathematical problem. They choose tools that are relevant and useful to the problem at hand. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful; recognizing both the insight to be gained and their limitations. Students deepen their understanding of mathematical concepts when using tools to visualize, explore, compare, communicate, make and test predictions, and understand the thinking of others.		
A2.MP. 6	Attend to precision. Mathematically proficient students clearly communicate to others and craft careful explanations to convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.		
A2.MP. 7	Look for and make use of structure. Mathematically proficient students use structure and patterns to provide form and stability when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective when needed.		

2016 Final Arizona Mathematics Standards - Reline Version - December 2016

A2.MP.8	Look for and express regularity in repeated reasoning. Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.

$$
\begin{aligned}
& \text { reasoning. } \\
& \text { Mathematically proficient students look for } \\
& \text { and describe regularities as they solve } \\
& \text { multiple related problems. They formulate } \\
& \text { conjectures about what they notice and } \\
& \text { communicate observations with precision. } \\
& \text { While solving problems, students maintain } \\
& \text { oversight of the process and continually } \\
& \text { evaluate the reasonableness of their } \\
& \text { results. This informs and strengthens their } \\
& \text { understanding of the structure of }
\end{aligned}
$$

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

P.G-SRT.D. 11	Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).		Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles. fe.g., surveying problems, resultant forcest

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

Plus Standards				
Circles G-C				
P.G-C.A	Understand and apply theorems about circles.			
P.G-C.A. 4	Construct a tangent line from a point outside a given circle to the circle.			
Expressing Geometric Properties with Equations (GGPE)				
P.G-GPE.A	Translate between the geometric description and the equation for a conic section.			
P.G-GPE.A. 2	Derive the equation of a parabola givena focus and directrix.	happy to see this as a plus standard.		
P.G-GPE.A. 3	Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.			
Geometric Measurement and Dimension (G-GMD)				
P.G-GMD.A	Explain volume formulas and use them to solve problems.			
P.G-GMD.A. 2	Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.			

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

2016 Final Arizona Mathematics Standards - Redline Version - December 2016

