$2^{\text {nd }}$ Grade - Summary of Revisions and Planning Guidance - Arizona Mathematics Standards - Adopted in 2016

Comparison of Arizona Mathematics Standards - 2010 to 2016

Adopted 2010		Adopted 2016		
Operations and Algebraic Thinking (OA)		Operations and Algebraic Thinking (OA)		
2.OA.A	Represent and solve problems involving addition and subtraction.			
	2.OA.A.1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. (See Table 1.)	2.OA.A Represent and solve problems involving addition and subtraction.	2.OA.A. 1	Use addition and subtraction within 100 to solve oneand two-step word problems. Represent a word problem as an equation with a symbol for the unknown. See Table 1.
2.OA.B	Add and subtract within 20.			
	2.OA.B.2. Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. (See standard 1.OA. 6 for a list of mental strategies.)	2.OA.B Add and subtract within 20.	2.OA.B. 2	Fluently add and subtract within 20. By end of Grade 2 , know from memory all sums of two one-digit numbers.
2.OA.C	Work with equal groups of objects to gain foundations for multiplication.			
	2.OA.C.3. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.	2.OA.C Work with equal groups of objects to gain foundations for multiplication.	2.OA.C. 3	Determine whether a group of objects (up to 20) has an odd or even number of members (e.g., by pairing objects or counting them by 2 's).
	2.OA.C.4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.		2.OA.C. 4	Use addition to find the total number of objects arranged in rectangular arrays (with up to 5 rows and 5 columns). Write an equation to express the total as a sum of equal addends.

| Number and Operations in Base Ten (NBT) | | Number | |
| :--- | :--- | :--- | :--- | :--- |
| 2.NBT.A | Understand place value. | | |

	2.NBT.B.7. Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.
	2.NBT.B.8. Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.
	2.NBT.B.9. Explain why addition and subtraction strategies work, using place value and the properties of operations. (Explanations may be supported by drawings or objects.)
	Measurement and Data (MD)
2.MD.A	Measure and estimate lengths in standard units.
	2.MD.A.1. Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.
	2.MD.A.2. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.
	2.MD.A.3. Estimate lengths using units of inches, feet, centimeters, and meters.
	2.MD.A.4. Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.

Geometry (G)		Geometry (G)		
2.G.A	Reason with shapes and their attributes.			
	2.G.A.1. Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. (Sizes are compared directly or visually, not compared by measuring.)	2.G.A Reason with shapes and their attributes.	2.G.A. 1	Identify and describe specified attributes of twodimensional and three-dimensional shapes, according to the number and shape of faces, number of angles, and the number of sides and/or vertices. Draw two-dimensional shapes based on the specified attributes (e.g. triangles, quadrilaterals, pentagons, and hexagons).
	2.G.A.2. Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.		2.G.A. 2	Partition a rectangle into rows and columns of samesize rectangles and count to find the total number of rectangles.
	2.G.A.3. Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.		2.G.A. 3	Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, fourths, half of, third of, fourth of, and describe the whole as two halves, three thirds, or four fourths. Recognize that equal shares of identical wholes need not have the same shape.
Standards for Mathematical Practice				
2.MP.1 Make sense of problems and persevere in solving them. Mathematically proficient students explain to themselves the meaning of a problem, look for entry points to begin work on the problem, and plan and choose a solution pathway. While engaging in productive struggle to solve a problem, they continually ask themselves, "Does this make sense?" to monitor and evaluate their progress and change course if necessary. Once they have a solution, they look back at the problem to determine if the solution is reasonable and accurate. Mathematically proficient students check their solutions to problems using different methods, approaches, or representations. They also compare and understand different representations of problems and different solution pathways, both their own and those of others.				
2.MP. 2 Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. Students can contextualize and decontextualize problems involving quantitative relationships. They contextualize quantities, operations, and expressions by describing a corresponding situation. They decontextualize a situation by representing it symbolically. As they manipulate the symbols, they can pause as needed to access the meaning of the numbers, the units, and the operations that the symbols represent. Mathematically proficient students know and flexibly use different properties of operations, numbers, and geometric objects and when appropriate they interpret their solution in terms of the context.				

2.MP. 3 Construct viable arguments, and critique the reasoning of others.

Mathematically proficient students construct mathematical arguments (explain the reasoning underlying a strategy, solution, or conjecture) using concrete, pictorial, or symbolic referents. Arguments may also rely on definitions, assumptions, previously established results, properties, or structures. Mathematically proficient students make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. Mathematically proficient students present their arguments in the form of representations, actions on those representations, and explanations in words (oral or written). Students critique others by affirming or questioning the reasoning of others. They can listen to or read the reasoning of others, decide whether it makes sense, ask questions to clarify or improve the reasoning, and validate or build on it.
Mathematically proficient students can communicate their arguments, compare them to others, and reconsider their own arguments in response to the critiques of others.

2.MP. 4 Model with mathematics.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. When given a problem in a contextual situation, they identify the mathematical elements of a situation and create a mathematical model that represents those mathematical elements and the relationships among them. Mathematically proficient students use their model to analyze the relationships and draw conclusions. They interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

2.MP. 5 Use appropriate tools strategically.

Mathematically proficient students consider available tools when solving a mathematical problem. They choose tools that are relevant and useful to the problem at hand. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful; recognizing both the insight to be gained and their limitations. Students deepen their understanding of mathematical concepts when using tools to visualize, explore, compare, communicate, make and test predictions, and understand the thinking of others.

2.MP. 6 Attend to precision.

Mathematically proficient students clearly communicate to others using appropriate mathematical terminology, and craft explanations that convey their reasoning. When making mathematical arguments about a solution, strategy, or conjecture, they describe mathematical relationships and connect their words clearly to their representations. Mathematically proficient students understand meanings of symbols used in mathematics, calculate accurately and efficiently, label quantities appropriately, and record their work clearly and concisely.

2.MP. 7 Look for and make use of structure.

Mathematically proficient students use structure and patterns to assist in making connections among mathematical ideas or concepts when making sense of mathematics. Students recognize and apply general mathematical rules to complex situations. They are able to compose and decompose mathematical ideas and notations into familiar relationships. Mathematically proficient students manage their own progress, stepping back for an overview and shifting perspective when needed.

2.MP. 8 Look for and express regularity in repeated reasoning.

Mathematically proficient students look for and describe regularities as they solve multiple related problems. They formulate conjectures about what they notice and communicate observations with precision. While solving problems, students maintain oversight of the process and continually evaluate the reasonableness of their results. This informs and strengthens their understanding of the structure of mathematics which leads to fluency.

