Instructional Framework Engineering Sciences 15.0000.00

Domain 1: Engineering Math and Science Principles		
45% - 55% Instructional Time STANDARD 3.0 Apply mathematical laws and principles relevant to engineering and technology		
3.2 Use statistical measures of central tendency as needed in the structured problem-solving process	 Central Tendency and Calculation and meaning (mean, median, mode) Variation Calculation and meaning (standard deviation, range) Graphical Interpretation of Normal distributions (Empirical Rule) 	
3.3 Use algebraic, geometric, and trigonometric relationships, characteristics, and properties to solve engineering problems	 Sin/Cos/Tangent and Inverse Calculation and Meaning Algebraic substitution, order of operation, and system of equations solutions Formula Manipulation 	
3.4 Evaluate the validity of mathematical solutions	Unit AnalysisEstimation of Results	
3.5 Use existing mathematical models as needed in the structured problem-solving process	 Formula Selection Prediction of results given a graph or equation of the phenomena Identify formula from graphical display of data 	
3.6 Use English and metric systems of measurement and dimensional analysis	 Unit Conversions Unit Notation Tolerances and Fit 	
STANDARD 4.0 Apply fundamental scientific laws and principles relevant to engineering and te	echnology	
4.1 Use the relationships among energy, work, and power to solve a variety of problems involving mechanical, fluid, electrical, and thermal systems	 Mechanical - Simple Machines / Mechanical Power / Mechanical Efficiency Electrical- Ohms Law / Kirkoffs Law / Circuit Analysis / Electrical Power / Efficiency 	

	 Thermal- Heat Transfer Methods / Thermal Equilibrium / Zeroeth Law / Q Calculations
4.2 Use Newton's Laws of Motion to analyze static and dynamic systems with and without the presence of external forces	 Free Body Diagrams Force / Mass / Acceleration Relationships Statics / Truss Analysis Kinematics - Projectile Motion
4.3 Use the laws of conservation of energy, charge, and momentum to solve a variety of problems involving mechanical, fluid, electrical, and thermal systems	Momentum
4.4 Assess relevant properties of materials used in engineering projects, i.e., chemical, environmental, mechanical (tension, compression, torque), electrical, and physical	 Material Stress calculation and meaning Moment of Inertia application to materials and structures Electrical conduction principles of materials Strength / hardness meanings (modulus of E, Brinell hardness)

Domain 2: Engineering Technology and Documentation

30% - 40% Instructional Time

STANDARD 5.0 Apply Engineering Technology and Tools	
5.1 Use spreadsheets and other mathematical software to solve problems, model, and display data	 Spreadsheets Formula entry Multiple graphs and entry Data sorting
5.2 Use measurement devices such as calipers, oscilloscopes, and digital multimeters to gather data for analysis	 Use measuring devices to gather data (e.g. ruler, tape measure, multimeter)
5.3 Apply precision, accuracy, and tolerance in measurement systems	Use precision accuracy with measurement devices (micrometer, caliper)
5.4 Use 3D CAD software to model and analyze engineering solutions	 Parametric modeling Additive/subtractive modeling Geometric constraints Virtual prototyping and simulations Produce drawings and types Dimensioning Multi-view
5.5 Interpret graphical data such as plans, diagrams, and working drawings	 Use graphical data to interpret dimensions Section views Multi-views Auxiliary views Specific and general tolerances Electrical diagrams/schematics

	Project flow charts
5.6 Practice safe use of tools, machines, equipment, and materials	 Safety regulations safety requirements OSHA knowledge General equipment safety rules Fire safety SDS
5.7 Verify calibration status of measurement tools	 Use of NIS traceable standards or known standards Check to zero, zero process on use
5.8 Fabricate models using multiple methods (e.g., 3D printing, metalwork, wood, and breadboards)	Produce functioning model to meet the design intent
STANDARD 6.0 Apply documentation and communication skills	
6.1 Demonstrate accurate documentation of data and results	 Data table formats (labeling, significant digits, unit notation) Data source documentation (instrument used, calibration status, collection personnel, method of measurement) Inferences and conclusions from data tables (averages, mean, median, mode)
6.2 Communicate status, assumptions, results, and conclusions using written and oral techniques	 Verbal presentation (attributes of effective speaking / presenting) Ability to use multimedia presentation methods (powerpoint, slides) Written reporting use of grammar and effective language Source citations and bibliography use (attribute others work)

Domain 3: Engineering Problem Solving 20% -25% Instructional Time	
2.1 Determine the problem	Problem identification
2.2 Interpret the problem based on known facts, research, and experience	Interpret the problem
2.3 Brainstorm solutions to the problem	Effective brainstorming techniques and pitfalls
2.4 Identify design criteria and constraints (e.g., cost, time, quality, manufacturability, testability, maintainability, human and environmental factors, and governmental regulatory requirements)	Design criteria and constraints should be based on scientific principles and potential impacts on people and the environment

2.5 Assess potential solutions against design criteria and constraints to select a solution that meets all requirements	 Decision matrix Pro-con lists Design iteration
2.6 Implement the selected solution	Construct a prototype or model
2.7 Validate the effectiveness of the implemented solution	Develop a design evaluation plan that aligns to the constraints and design problem
2.8 Reiterate the process as necessary	Design iteration from within the design process at any point
STANDARD 7.0 Develop a project management plan to implement a solution	
7.1 Estimate tasks and time needed to implement a solution	 Work breakdown structure - is a key project deliverable that organizes the team's work into manageable sections or chunking Outcome based Deliverable timeline
7.2 Identify resources needed (e.g., materials, funding, people, and approval)	 Resource identification (budget, material list, funding, people, and approval)
7.3 Demonstrate the use of automated tools used to create project management plans	 Create / Read Gantt Chart Create / Read tasks list Create / Read calendar Use software to create project gantt pro Demonstrate task dependency and predecessor relationships Use software to determine critical path, float, completion times, budget
7.4 Track progress from implementation to completion using the project management plan	Update project management tools to predict completions costs and time

Domain 4: Engineering Career Explorations		
5% - 10% Instructional Time		
STANDARD 1.0 Investigate engineering as a human endeavor aimed to address the needs of a global society		
1.1 Explain how engineering integrates many fields of study and may lead to other occupations	 Engineer v scientist Spectrum of engineering careers from technical to professional 	
1.2 Debate the societal, legal, and ethical responsibilities of engineering	 Legal requirements (Licensure, School Accreditation, Licensure Process) Professional ethics and associations 	

1.3 Determine the impact of engineering from multiple perspectives, i.e., economic, environmental, political, sustainable, and health and safety	Social impact of engineering
1.4 Compare and contrast various disciplines of engineering and how each contributes to the success of a solution	 Major Engineering Fields (i.e. electrical, mechanical, chemical, civil) Subset Engineering Fields (i.e. Aero, Construction, Bio-Medical) Systems Engineering combination of disciplines
1.5 Identify the skills and education needed to enter a particular engineering discipline	 Engineering Degree requirements (AZ college entry requirements) Engineering / STEM careers other than degree programs (tech, community college, apprenticeships, internships)