Arizona Mathematics Standards- ${ }^{\text {th }}$ Grade Standards Placemat
 Grade level content emphasis indicated by: Major Cluster; $\boldsymbol{\Delta}$ Supporting Cluster

Develop understanding of proportional relationships.
Students extend their understanding of ratios and rates to develop understanding of proportionality to solve single- and multi-step problems. students use their understanding of ratios and proportionality to solve wide variety of percent problems, including those involving discounts,
interest, taxes, tips, and percent increase or decrease Students graph proportional relationships and understand the unit rate informally as a measure of the steepness of the related line. They distinguish proportional relationships as the foundation for rate of change.
Develop understanding of perations with ration numbers and work with expressions, inequalities, and linear equations
with expressions, inequalities, and linear equations.
Students develop a unified understanding of number by
fractions, decimals (that have a finite or a repeating decimal
representation), and percents as different representations of rational numbers. Students extend addition, subtraction, multipicication, and division to all rational numbers, maintaining the properties of operations and the
relationships between addition and subtraction, and multitication and division. By applying these properties and by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers. Students can use variables to represent quantities and construct simple equations and inequalities to solve problems. Students fluently solve one variable
atio and Proportion (RP)
7.RP.A Analyze proportional relationships and use them to solve mathematical problems and problems in real-world context.
RP.A.1: Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in ke or different units.
7.RP.A.2: Recognize and represent proportional relationships between quantities.
. Decide whether two quantities are in a proportional relationship (eg by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight liie through the origin).
b. Identify the constant of proportionality (unit rate) in tables, graphs, quations, diagrams, and verbal descriptions of proportional relationships.
c. Represent proportional relationships by equations. For example, if otal cost t is proportional to the number n of items purchased at number of items can be expressed as $t=p n$.
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
se proportional relationships to solve multi-step ratio and percent ratuities and commissions, fees percent increas and decreas missions, fees, percent increase and decrease, percent error).

The Number System (NS)

7.NS.A Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers xcept division by zero.
.NS.A.1: Add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
a. Describe situations in which opposite quantities combine to make 0 b. Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum ore
(are additive inverses). Interpret sums of rational numbers by describing real-world context
c. Understand subtraction of rational numbers as adding the additive rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world context.
d. Apply properties of operations as strategies to add and subtract rational numbers.
NS.A. 2 Mutitiply and divide integers and other rational numbers.
a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, multiplying signed numbers. Interpret products of rational numbers by describing real-world context.
b. Understand that integers can be divided, provided that the divisor is rational number If p and q are integers, then- $p(q)=(-p) / q=p /($ q). Interpret quotients of rational numbers by describing real-world context.
c. Apply properties of operations as strategies to multiply and divide rational numbers.
d. Convert a rational number to decimal form using long division; know that nhe decimal form of a rational number terminates in 0 s or eventually repeats.
7.NS.A. 3 Solve mathematical problems and problems in real-world context involving the four operations with rational numbers. Computations complex fractions where $l b \div d d$ when manipuang frac
xpressions and Equations (EE)
7.EE.A Apply and extend previous understanding of arithmetic to algebraic expressions.
7.EE.A.1: Apply properties of operations as strategies to add, subtract, 7.EE.A.2: Rewrite an expression in different forms , and understand the relationship between the different forms and their meanings in problem context. For example, $a+0.05 a=1.05$ a means that "increase by 5% " is the same as "multiply by 1.05 ."
7.EE.B Solve mathematical problems and problems in real-world context using numerical and algebraic expressions and equations.
7.EE.B.3: Solve multi-step mathematical problems and problems in realworld context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. For example, If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional 1110 or
7.EE B. . 4 : Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve
equations of these forms fluently. Compare an algebraic solution

10 an arithmetic solution, identifying the sequence of the operations used in each approach.
b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and rare ralional numbers. G p phe problem.
Geometry (G)
7.G.A Draw, construct, and describe geometrical figures, and describe the relationships between them.
7.G.A.1: Solve problems involving scale drawings of geometric figures, such reproducing a scale drawing at a different scale.
7.G.A.2: Draw geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G.A.3: Describe the two-dimensional figures that result from slicing threedimensional figures.
7.G.B Solve mathematical problems and problems in real-world easure area surface area and
volume.
7.B.B.4: Understand and use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the
7.G.B.5: Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure,
7.G.B.6. Solve mathematical problems and problems in a real-world contex involving area of two-dimensional objects composed of triangles, and problems in real-world context involving volume and surface area of three-dimensional objects composed of cubes and right prisms.
Statistics and Probability (SP)
7.SP.A Use random sampling to draw inferences about a
population.
Understand that statistics can be used to gain inform population by examining a sample of the population; ge sample is representative of that population Understad only andom sampling tends to produce representative samples and support valid inferences.
7.SP.A.2: Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the book; predict the winner of a school election based on randoly sampled survey data. Gauge how far off the estimate or prediction might be.
7.SP.B Draw informal comparative inferences about two
populations.
7.SP.B.3: Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of player on the soccer team, about twice the variability (mean absolute
deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
7.SP.B.4: Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grad
2.SP.C Investigate chance processes and develop, use and evaluate probability models.
7.SP.C. 5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP.C. 6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
7.SP.C. 7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies. If the agreement is not good, explain possible sources of the discrepancy.
a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a Class, find the probability that Jane wil
probability that a girl will be selected.
b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning pen will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

athematical Practices

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.
. Make sense of problems and persevere in solving them.
. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
. Use appropriate tools strategically
6. Attend to precision.

Look for and make use of structure
. Look for and express regularity in repeated reasoning.

