Arizona Science Standards Revision Working Group

Introductions

- Brea Rivera
 - Science Specialist
- Sarah Sleasman
 - STEM Specialist
- Jonathan Moore, Ed. D.
 - Deputy Associate Superintendent
- Carol Lippert
 - Associate Superintendent

Arizona Science Standards Revision Working Group

Today we will review technical feedback and make changes to the 1 Task standards document

Housekeeping

- 1. Sign in
- 2. Parking validation
- 3. Restrooms
- 4. Breaks/Lunch
- 5. Travel Questions Fill out W9 if needed
- 6. Sign forms All members

Cell phones should only be used during breaks and lunch. If you need to take a call, please go to the break room. Please check text and email only during break due to non-disclosure.

Housekeeping

Dr. Eugene Judson

Associate Professor - Science Education Arizona State University

ASU Research project – IRB consent

Participation in this research project is completely voluntary and does not impact your participation in standards work.

Biggest Thank You!

Introductions

Introduce yourself by telling everyone in the group:

- 1. Your name
- 2. Your school/district
- 3. Your current position

Standards Review - Structure

Arizona State Board of Education

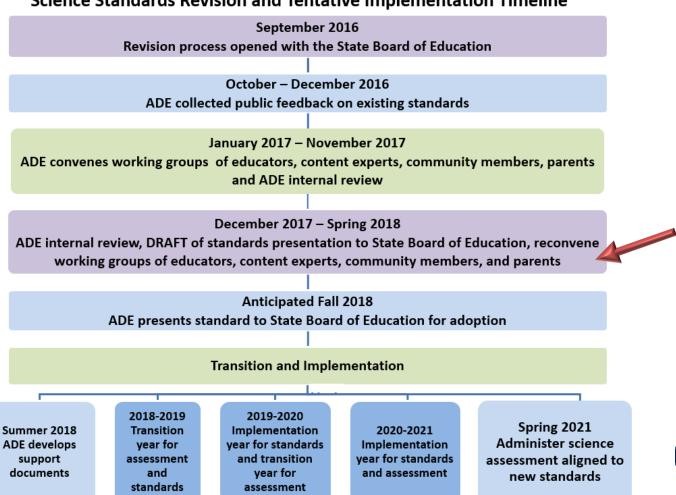
Decision-making body for standards

Arizona Department of Education K-12 Standards Section

Manages the Standards revision process Facilitates working group meetings

Science Standards Review and Revision Work Groups

Fluid groups of diverse grade level content experts responsible for creating working drafts


Public feedback, current research, and professional experience /knowledge informs revisions to drafts.

Science Standard Revision and Implementation Timeline

Science Standards Revision and Tentative Implementation Timeline

Last updated 3/22/18

Working Group Norms

- Actively engage in all discussions
- Be open-minded
- Have an attitude that fosters collaboration, agreement, and consensus
- Be mindful of timelines and scope of work
- Cell phone/email checks are limited to breaks

Standards, Curriculum, & Instruction

Standards – What a student needs to know, understand, and be able to do by the end of each grade. Standards build across grade levels in a progression of increasing understanding and through a range of cognitive demand levels.

Standards are adopted at the state level by the State Board of Education.

Standards, Curriculum, & Instruction

Curriculum – The resources used for teaching and learning the standards. **Curricula are adopted at a local level by districts and schools**.

Instruction – The methods used by teachers to teach their students. **Instructional techniques are employed by individual teachers** in response to the needs of the students in their classes to help them progress through the curriculum in order to master the standards.

Working Group Norms

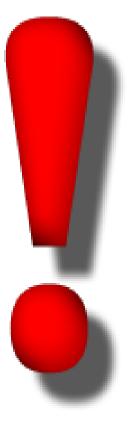
No "I" Statements

Learning Progressions

Dhusiaal Salamaa Standarda	Learning Progressions, Key Terms, and Crosscutting Concepts
Physical Science Standards	Learning Progressions, key remis, and crosscutting concepts
2.P1U2.1	
Plan and carry out an investigation to determine that matter has mass, takes up space, and is recognized by its observable properties; use the collected evidence to develop and support an explanation .	All the 'stuff' encountered in everyday life, including air , water and different kinds of solid substances , is called matter because it has mass , and therefore weight on Earth, and takes up space. Different materials are
2.P1U2.2	recognizable by their properties, some of which are used
Plan and carry out investigations to gather evidence to support an explanation on how heating or cooling can cause a transformation (solid, liquid, gas).	to classify them as being in the solid , liquid or gas state . Crosscutting Concepts: energy and matter , systems and system models , patterns, cause and effect, stability and change
2.P4U1.3	
Gather, reason, and communicate information about ways heat energy can cause change in objects or materials.	There are various ways of causing an event or bringing about change in objects or materials. Heating can cause change , as in cooking, melting solids or changing water to vapor .
	Crosscutting Concepts: energy and matter , systems and system models , patterns, cause and effect, stability and change, structure and function

Format of HS + Standards

	Essential HS.P	1U1.2		
Chemistry	predict the fo both natural a	erns in the transfer or sharing of electrons to rmation of ions, molecules, and compounds in and synthetic processes. U1.2, 8.P1U1.2, HS.E2U1.15, HS.L2U1.25	Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in total binding energy (i.e., the sum of all bond energies in the set of molecules) that are matched by changes in kinetic	
		HS+C.P1U2.5 Develop and use models to predict and explain forces within and between molecules.	energy. In many situations, a dynamic and condition- dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical	
	Physical Science Plus (+) Standards HS+ Standards are designed for students taking a high school chemistry (C) or honors chemistry course.	HS+C.P1U2.6 Develop and use models to explain the differences between chemical compounds using patterns as a method for identification.	reactions. Chemical processes and properties of materials underlie many important biological and geophysical phenomena. Crosscutting Concepts: Crosscutting Concepts: system and system models; stability and change; cause and effect; energy and matter; patterns; structure and function ⁴	
	Essential HS.P	1U4.3		
Chemistry	chemistry has	ument from evidence about how the use of positive and negative ethical, social, economic, al implications.	Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. Machines are judged as efficient or inefficient based on the amount of energy input needed	
	Physical Science Plus (+) <u>Standards HS</u> + Standards are designed for students taking a high school chemistry (C) or honors chemistry	HS+C.P1U1.7 Plan and conduct investigations to test predictions of the outcomes of chemical reactions, based on patterns of chemical properties. Connection: <u>HS.P1U2.1</u>	to perform a particular useful task. Inefficient machines are those that produce more waste heat while performing a task and thus require more energy input. It is therefore important to design for high efficiency so as to reduce costs, waste materials, and many environmental impacts. ⁴ The behavior and arrangement of the atoms explains the properties of different materials. In chemical reactions atoms are rearranged to form new substances. The opposite	


Mark your charts as things have been completed.

Reminder:

Keep in mind our work product is public record.

Items that are not actionable:

- Curriculum
- Instruction
- Funding/Budget
- Assessment

Actionable:

Specific actionable comments related to

- Standard
- Organization
- Introduction

Etc....

Technical Review/Edits

- If not already, sign into your groups google account (example: <u>azscigroup1@gmail.com</u>)
- 1. Go to mail, and open the link of the google doc
- 2. When editing, please check that you can see other groups editing at the same time ⁽³⁾
- 3. Go to your assigned section. Read the technical review comments. If the comment is valid, make changes to your section based off of technical review.

Making changes to the DRAFT document.

Highlight items that should be deleted in red.

Your changes you make to the document should be in red font.

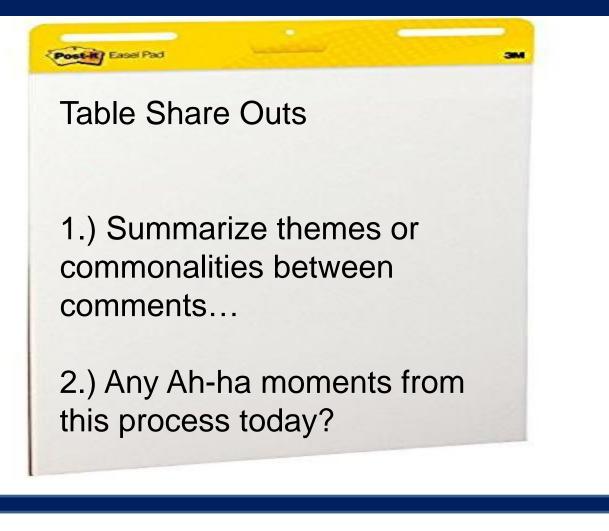
Notes changes to the documents based off public survey in the spreadsheet by saying "yes or no/key words (evolution or other appropriate terms)" in the "addressed" column and highlighting that comment number and addressed column in yellow.

	Question	12. Please comment on the Introduction section.				
ddressed 🔻	Comment #	Public Comment	Actionable Yes/No	Actionable Yes/No 👻	Suggested Changes 👻	Committee Notes
		The Introduction itself explains well the design and intended implementation, but				
		on page 4, the Core Ideas, Life Science, LS section: evolution is a not a theory, (or				Big Idea 10 is the basis for L4 on Intro p 4 and frame work pp 139-168 -
		a theory in the science discipline). unity and diversity of organisms IS a result of				Core Idea LS4 pp. 164-168 but discussed in group the differences of
olution	5	adaptation, which is a component of evolution.	Yes	Introduction pg 4		chemical evolution, macro evolution and micro evolution.
		I believe that some of the wording that was added however is not accurate, as mention prior I have concerns with the paragraph at the bottom of page 2 which			Remove "Formerly known as the scientific	
		explains patterns, I strongly disagree with the statement that identifies the Science			method" statement	
		and Engineering Practices to the scientific method, if anything in our current	-		from beginning of the	
		document it is related to the inquiry process not the scientific method. Science			Science and	The Science and Engineering Practices did not derive from the Scientific
		as changed even since I was in high school 25 years ago, the scientific method is			Engineering Practices	Method.The Scientific Method is procedure and the SEPs are critical
	14	more of communicating findings not the way that science is done.	Yes	Introduction pg 2-3	DE. 3	components of scientific literacy.
·	-	Take III the green out. Non- experts clearly wrote the additional pieces and do no				
		have an understanding of the science and engineering practices nor the				
15	14	crosscutting concepts.	ves	comment		Public feedback is being reviewed
		ne terms cross-cutting and intertwining are confusing at best. This attempt to				
		intermingle three levels of cognition regarding science is very confusing and to			Possible	
		what end, at that. Why aren't that standards simply setting out the core concepts			rewording/word	
	1	needed for functional literacy and practice in science? Rather than cross-cutting			clarification	
	15	why not simply call them ways of looking at the world ?	Yes	comment	(intertwined)	
		Overall, the introduction provides enough information and context to understand				
		the standards. I'm confused by the ADE changes that were made. The example fo	r I			
		Patterns doesn't really capture the intent of that practice. I recommend that if an			Rewrite bottom	
		example is included, the ADE allow the working groups of educators to write a			paragraph on page 2	
		better example or to pull one from the Framework, as several examples are cited			using pgs. 85-87 from	
		in that document. I am also confused about the statement about the scientific			the Framework to use	
		method, this indicates that there isn't a clear understanding of the practices (ever			examples from simple	
		the 2004 standards didn't refer to the scientific method) Please consult with high			to complex patterns.	
		education faculty or research documents such as the Framework to better	1		See comment 143	
		understand why the reference to the scientific method is misleading and	No.		about Scientific	
13	16	inappropriate.	Yes	comment	Method statement.	examples for physical and life science were from the framework: pg 85

Grade Level Standards

Read your grade level draft standards that correspond with your working group today.

Begin when your group is ready on your assigned section!


Note: Let us know when you are done to...

Final Thoughts

