

Multi-State Alternate Assessment

2016-17 Technical Report

TABLE OF CONTENTS

CHAPTER 1 CURRENT YEAR UPDATES 1
1.1 Measured Validity Statement 1
CHAPTER 2 OVERVIEW OF MSAA 3
2.1 HIstory Of MSAA 3
2.1.1 Core Beliefs 4
2.1.2 Stakeholders 4
2.2 Purposes and Uses of MSAA 5
2.3 MSAA PARTICIPATION 6
CHAPTER 3 TEST CONTENT 7
3.1 History of Alternate Achievement Standards and Core Content Connectors 7
3.1.1 The Learning Progression Frameworks 7
3.1.2 Core Content Connectors 8
3.2 Alignment and Linkages 10
3.3 Assessment Design 13
3.3.1 Operational Design 13
3.3.2 Operational Core Items and Embedded Field-Test Items 14
3.3.3 Item Design and Administration 16
3.3.4 Item Components 18
3.3.4.1 Selected-Response: Reading, Writing, Mathematics 18
3.3.4.2 Constructed-Response: Mathematics 18
3.3.4.3 Constructed-Response: Writing 19
3.4 CONTENT AND BLUEPRINTS 19
3.4.1 Mathematics 20
3.4.2 English Language Arts 21
CHAPTER 4 TEST DEVELOPMENT. 22
4.1 General Philosophy and Role of Item Development Subcommittee in Test Development 22
CHAPTER 5 TRAINING AND ADMINISTRATION 23
5.1 TESt Administrator Training 23
5.2 Test Administrator Training Modules 23
5.3 TEst Coordinator Training 24
5.4 Test Coordinator Training Modules 25
5.5 TEst Administration Manual 26
5.5.1 MSAA State Leads 26
5.5.2 MSAA Technical Support 26
5.5.3 Important Dates 27
5.5.4 How to Use the TAM 27
5.5.5 Introduction 27
5.5.6 Administration Procedures Overview 27
5.5.7 Who Can Administer the MSAA? 28
5.5.8 The MSAA Test Design 30
5.5.9 Directions for Test Administration (DTA) and How They Are Used 31
5.5.10 Accessibility Features and Accommodations 32
5.5.11 Test Security and Test Irregularities 37
5.5.12 TAM Appendix A: MSAA Scribe Accommodation Protocol 38
5.5.13 Scribe Accommodation Protocol for ELA and Mathematics 38
5.5.14 Scribe Accommodation Protocol for the Writing Prompt 39
5.5.15 Procedures for Annotation 39
5.5.16 TAM Appendix B: Augmentative and Alternative Communication Guidelines. 40
5.5.17 TAM Appendix C: Sign Language Protocol 41
5.6 Test Coordinator and Test Administrator User Guides 43
5.6.1 Document Overview. 43
5.6.2 Troubleshooting 43
5.6.3 How to Access the MSAA Online Assessment System 44
5.6.4 Before Testing 44
5.6.5 Administer and Navigate the Test 44
5.6.6 After Testing 44
5.6.7 Appendix A 44
5.6.8 Appendix B 45
5.6.9 How to Navigate the MSAA Online Assessment System 45
5.6.10 Order Test Materials 45
5.6.11 Manage Users. 45
5.6.12 Manage Organizations 45
5.6.13 Test Administration Training 45
5.6.14 Managing Students and Completing Testing Activities 46
5.6.15 My Reports 46
5.6.16 Operational Test Administration 46
5.6.17 Session Structure and Two-Stage Adaptive Design 46
5.6.18 MSAA Service Center 48
5.6.19 Additional Supports 49
5.6.20 Monitoring and Quality Control 49
5.6.21 Operational Test Survey Results 50
CHAPTER 6 SCORING 52
6.1 Item Scoring Process 52
6.1.1 Scoring Processes and Rules for Selected-Response and Constructed-Response Items in Mathematics and Selected-Response Items in Reading and Writing 52
6.1.1.1 Overview of Scoring Process by Item Type 52
CHAPTER 7 REPORTING 54
7.1 INTRODUCTION 54
7.2 DeVelopment and Approval 54
7.3 Primary Reports 55
7.3.1 Student Report 56
7.3.2 Student Roster 56
7.3.3 Summary Report 57
7.3.4 Quality Assurance 58
CHAPTER 8 CLASSICAL ITEM ANALYSIS 59
8.1 CLASSICAL DIFFICULTY AND DISCRIMINATION INDICES 59
8.2 Differential Item Functioning 63
8.3 DIMENSIONALITY ANALYSIS 65
CHAPTER 9 ITEM RESPONSE THEORY SCALING AND EQUATING 70
9.1 Item Response Theory 70
9.2 Calibration Procedure. 71
9.3 Item Response Theory Results 72
9.4 Equating 77
9.5 Achievement Standards 78
9.6 Reported Scaled Scores 80
CHAPTER 10 RELIABILITY 83
10.1 Reliability and Standard Errors of Measurement 84
10.2 Subgroup Reliability 87
10.3 Reliability of Performance-Level Categorization 88
10.3.1 Accuracy and Consistency 89
CHAPTER 11 VALIDITY 91
REFERENCES 93
APPENDICES 96
APPENDIX A ACCOMMODATION FREQUENCIES
APPENDIX B PARTICIPATION RATES
APPENDIX C TEST BLUEPRINTS
APPENDIX D ITEM REVIEW AND BIAS AND SENSITIVITY REVIEW COMMITTEE MEMBERS APPENDIXE DECISION RULES
APPENDIX F MSAA 2017 GUIDE FOR SCORE REPORT INTERPRETATION
APPENDIX G ITEM-LEVEL CLASSICAL STATS
APPENDIX H DIFFERENTIAL ITEM FUNCTIONING RESULTS
APPENDIXI ITEM RESPONSE THEORY PARAMETERS
APPENDIX J MSAA 16-17 TECHNICAL BRIEF: RELATIONSHIP OF IRT DIFFICULTY WITH GRADE AND TIER LEVEL
APPENDIX K TEST CHARACTERISTIC CURVES \& TEST INFORMATION FUNCTIONS
APPENDIX L RAW TO SCALED SCORE LOOKUP TABLES
APPENDIX M SCORE DISTRIBUTIONS
APPENDIX N MSAA 16-17 TECHNICAL BRIEF: CLASSICAL RELIABILITIES
APPENDIX O CLASSICAL RELIABILITY
APPENDIX P DECISION ACCURACY AND CONSISTENCY RESULTS
APPENDIX Q TECHNICAL ADVISORY COMMITTEE MEMBERS

CHAPTER 1 CURRENT YEAR UPDATES

For the 2016-17 assessment, the M SA A Partner States comprised A rizona, A rkansas, M aryland, M aine, M ontana, the Pacific A ssessment Consortium (PAC-6: Guam and the Commonwealth of Northern M ariana Islands [CN M I]), R hode Island, South Dakota, Tennessee, the U.S. V irgin Islands (USVI), and W ashington, D.C.

For the 2016-17 operational assessment, the M ulti-State A Iternate A ssessment (the M SA A) became two-stage adaptive in nature, meaning that student performance in the first stage of the assessment determined the second stage administered to the student. Furthermore, operational reading foundational items and Tier 1 writing prompts were removed from the M SA A to allow for additional research and/or development of these item types. Based on analysis of item performance, the M SAA Partner States decided to remove the grade 3 and 4 ELA foundational reading items in order that they may be revised to better align to the standards. A dditionally, the Tier 1 writing prompts were removed from the 2016-17 test design in order to reevaluate the scoring model used for these items. Although the Tier 1 writing prompts were removed, basic writing skills were still assessed at every grade via writing process multiple-choice items. The balance of the M SAA operational items remained fundamentally the same as the 2015-16 operational assessment. The 2016-17 assessment included field-test items in both English language arts (ELA ; reading items, writing skills items and writing prompts) and mathematics. The field-test items for each grade and content area included items from differing levels of complexity. There were three forms per grade for each content area. A dditional detailed information is available in Chapter 3.

Test documentation was updated to reflect changes in the Test Administration M anual (TAM), M SAA Online Assessment System U ser Guide for Test Administrators, M SAA O nline Assessment System U ser Guide for Test C oordinators, Directions for Test Administration (DTA), and M SAA 2017 Guide for Score Report Interpretation Guide. The TAM, M SAA Online Assessment System U ser Guide for Test Administrators, M SAA Online Assessment System User Guide for Test Coordinators, DTA, and online training modules were heavily revised in order to streamline information and provide more clarity to test administrators (TAs) and test coordinators (TCs). A dditional detailed information is available in Chapter 5.

1.1 Measured Validity Statement

The 2016-17 report describes several technical aspects of the M SAA in an effort to contribute to the accumulation of validity evidence to support M SAA score interpretations. B ecause the interpretations of test scores, not the test itself, are evaluated for validity, this report presents documentation to substantiate intended interpretations (AERA, APA, \& NCME 2014). Each section in this report contributes important information to M SA A : test development, test alignment, test administration, scoring, reliability, performance levels, and reporting.

Standards for Educational and Psychological Testing (AERA et al., 2014) provides a framework for describing sources of evidence that should be considered when constructing a validity argument. These sources include evidence based on the following five general areas: test content, response processes, internal structure, relationship to other variables, and consequences of testing. A lthough each of these sources may speak to a different aspect of validity, they are not distinct types of validity. Instead, each contributes to a body of evidence about the comprehensive validity of score interpretations.

CHAPTER 2 OVERVIEW OF MSAA

M SAA assesses ELA and mathematics at grades 3-8 and 11 and is aligned through the States' C ontent Standards and the M SAA C ore C ontent Connectors (CCCs). A s delivered starting in Spring 2017, M SAA is a computer-based, on-demand, two-stage adaptive assessment consisting mostly of selectedresponse and some constructed-response items. Both item types are written at distinct levels of complexity, representing different levels of skill acquisition by students.

Students with significant cognitive disabilities often need materials and instructional strategies that are substantially adapted and scaffolded, and that have built-in supports to meet their individual needs.

The M SAA levels of complexity are designed to follow instructional practices. When students begin to learn a new skill or acquire new knowledge, they need more support and scaffolding. As students learn and develop mastery of that skill or knowledge, they need less support. The test items on M SAA are developed with many scaffolds and supports embedded within the items. Supports not embedded in the test items may be provided as accommodations, as may other allowable ways to present the item to students, based on their individual requirements.

The assessment is designed to be administered one-on-one, and may be delivered via an online, paper-pencil, or hybrid format. The needs of the student may also be addressed through other supports, such as assessment features built into the platform, and accommodations, which include assistive technology, a paper version of the test, a scribe, and sign language. A ppendix A contains the 2016-17 summary of accommodation usage frequencies for the M SAA.

Each content area consists of 32-35 operational items, which are mostly selected-response with some constructed-response items in mathematics. The operational writing items of the ELA test consist of a series of selected-response items at each grade level. Each content area assessment is divided into test sessions. There are also embedded field-test items in Session 1 for each grade and content area, as well as a field-test writing prompt for ELA. Test administrators have substantial leeway in developing a testing schedule with the ability to start and stop a test depending on the engagement of the student.

2.1 History of MSAA

W ork leading up to M SAA began in late 2010, when the National Center and State Collaborative (NCSC) began development of the NCSC A Iternate A ssessments based on A Iternate A chievement Standards (AA-AAS) for students with the most significant cognitive disabilities. This work culminated in the operationalized NCSC assessment in spring 2015. For additional information about the NCSC assessment, please refer to the National Center and State Collaborative 2015 Operational Assessment Technical Manual or contact the M SAA Partner States at M SAA @A ZED.gov.

2.1.1 Core Beliefs

The core beliefs of MSAA began with NCSC and were laid out in the prior planning and development of that assessment. As recorded in the National Center and State Collaborative 20150 perational Assessment Technical M anual, as states and organizational partners implemented the NCSC development plan, they found they had to come to a consensus on topics that were a mix of practice and theory in the comprehensive context of teaching and learning for the students. They required a blend of policy, educational, and technical solutions. Through policy discussions and in iterative research and design steps, the partners arrived at a shared philosophy and guiding principles that are reflected in the overall project resources. These project resources include the comprehensive system of curriculum, instruction, classroom assessment, and professional development, as well as in the operational assessment design.

The M SAA Partners, as their NCSC counterparts before, believe that accessibility is central to the validity argument of the assessment, and that accessibility to the academic content based on college- and career-ready academic standards begins with rigorous curriculum and instruction resources and training to teachers. The original design of NCSC curriculum and instruction resources was informed by extant research and iterative small studies to ensure inclusive accessibility and appropriately high expectations for learning. Then, the NCSC assessments were based on the same model of learning as reflected in classroom resources. Finally, the NCSC project provided resources for intervention on communicative competence to ensure all students have a way first to learn the concepts and then to show what they know on the assessment. The NCSC Theory of A ction, available at www.ncscpartners.org/M edia/D efault/PDFs/Resources/NCSCBrief9.pdf, was developed to explain the bases for these resources and how they were intended to relate to one another, to college- and career-ready academic standards, and, ultimately, to the goals of having all students with significant cognitive disabilities leave high school ready to participate in college, careers, and their communities.

Practice-focused summaries of the foundational components reflected in the design of the NCSC assessment, known as the NCSC Brief series, are available to orient readers to the larger context of the comprehensive NCSC system of curriculum, instruction, assessment, and professional development. For additional information about the NCSC assessment, please refer to the National Center and State Collaborative 20150 perational Assessment Technical M anual or contact the M SAA Partner States at MSAA @AZED.gov.

2.1.2 Stakeholders

M any stakeholders are involved in the development of M SAA. M SAA State Leads are key representatives from each Partner State and together compose the decision-making body for M SAA. M embers of this body participate in various subcommittees that focus on specific aspects of the assessment and have decision-making authority on behalf of the Partner States for each subcommittee's focal area.

The M SAA M anuals, User Guides, and Training Subcommittee that oversaw development of the Test Administration M anual (TAM), M SAA Online Assessment System U ser Guide for Test Administrators, M SAA Online Assessment System U ser G uide for Coordinators, and online training modules consisted of M SAA State Leads from A rizona, M aine, M aryland, M ontana, R hode Island, and South Dakota. The End-of-Test Survey Subcommittee that provided the content of the survey, determined relevant policies, and received the results after administration had representation from A rizona, R hode Island, and South Dakota. Decisions and approvals related to the core item constructed sets and the front matter for the Directions for Test Administration (DTA) were addressed by the Test Construction and DTA Revisions Subcommittee, with representation from A rizona, M aine, M aryland, M ontana, Rhode Island, and South Dakota. The Item Development Subcommittee, composed of M SA A State Leads from A rizona, M aine, M aryland, M ontana, Rhode Island, and South Dakota, provided overall input and direction related to development of field-test items. Finally, report revisions and decisions were the responsibility of the M SAA Reports Subcommittee, with representation from A rizona, M aryland, South Dakota, and Tennessee.

2.2 Purposes and Uses of MSAA

MSAA is a comprehensive assessment system designed to promote increasing higher academic outcomes for students with significant cognitive disabilities in preparation for a broader array of postsecondary outcomes. M SAA is designed to measure academic content that is aligned to and derived from Partner States' content standards. This test contains many built-in supports that allow students to use materials they are most familiar with and communicate what they know and can do as independently as possible. M SAA is administered in the areas of ELA and mathematics in grades 3-8 and 11.

M SAA was developed to ensure that all students with significant cognitive disabilities are able to participate in an assessment that is a measure of what they know and can do in relation to the grade-level State Content Standards. M SAA is a component of a system of curriculum, instruction, and professional development that allows students with the most significant cognitive disabilities to access grade-level content aligned to the grade-level State Content Standards.

The M SA A Partners' long-term goal is to ensure that students with the most significant cognitive disabilities achieve increasingly higher academic outcomes and leave high school capable of pursuing postsecondary options. A well-designed summative assessment alone is insufficient to achieve this goal.

M SAA is designed to meet the requirements of the Every Student Succeeds Act (ESSA) and Individuals with Disabilities Education Act (IDEA). These laws mandate that all students participate in assessments that measure student achievement on grade-level content standards.

2.3 MSAA PARTICIPATION

The criteria for student participation in M SAA reflect the pervasive nature of a significant cognitive disability. All content areas should be considered when determining who should participate in this assessment. Table 2-1 below shows the participation criteria and the descriptors used to determine eligibility for participation for each student.

Students must meet the following eligibility criteria:

Table 2-1. 2016-17 MSAA: Participation Criteria

Participation Criteria	Participation Criteria Descriptors
1.The student has a significant cognitive disability.	Review of student records indicates a disability or multiple disabilities that significantly impact intellectual functioning and adaptive behavior.* *Adaptive behavior is defined as essential for someone to live independently and to function safely in daily life.
2.The student is learning content linked to grade-level content standards.	Goals and instruction listed in the IEP for this student are linked to the enrolled grade-level content standards and address knowledge and skills that are appropriate and challenging for this student.
3.The student requires extensive, direct individualized instruction and substantial supports to achieve measurable gains in the grade- and age-appropriate curriculum.	The student (a) requires extensive, repeated, individualized instruction and support that is not of a temporary or transient nature, and (b) uses substantially adapted materials and individualized methods of accessing information in alternative ways to acquire, maintain, generalize, demonstrate, and transfer skills across multiple settings.

A ppendix B shows the 2016-17 summary of participation rates by demographic category for the MSAA.

A ssessments for students with significant cognitive disabilities rely on a foundation of communicative competence. Students who do not have receptive and expressive communication are unlikely to be able to demonstrate what they know and can do on an assessment. Students who do not have a mode of communication are identified during the assessment process.

Post-assessment, teachers may use the Communication Tool Kit developed by NCSC to help these students develop a mode of communication. The tool kit can be found here:
https://wiki.ncscpartners.org/index.php/Communication_Tool_K it.

CHAPTER 3 TEST CONTENT

3.1 History of Alternate Achievement Standards and Core Content Connectors

Designed specifically for students with significant cognitive disabilities, NCSC A Iternate A ssessment was a performance-based test that was aligned with grade-level State Content Standards for ELA and mathematics. The NCSC AA-AAS tested student performance in ELA and mathematics based on alternate achievement standards. A student's performance on the NCSC AA -AAS was reported by a scaled score for each content area, as well as by a performance level. NCSC looked at the Learning Progression Frameworks (LPFs) together with the grade-level content expectations from the Common Core State Standards (CCSS) to identify and clarify the most salient grade-level, core academic content to guide instruction and assessment of students with the most significant cognitive disabilities from kindergarten through high school. This academic content is referred to as the Core Content Connectors (CCCs).

The NCSC state and center partners, which comprised content and special education experts, focused on defining the constructs of reading, writing, and mathematics to reflect an appropriate expectation of instruction and learning throughout a student's educational experience. Furthermore, the experts sought to make those constructs adaptable to the way in which students with significant cognitive disabilities demonstrate acquired knowledge and skills. NCSC established overarching content definitions by examining (a) existing content definitions in general education; (b) the content, concepts, terminology, and tools of each domain; (c) a body of extant research; and (d) the CCSS. These content definitions became central to the development of assessment items.

NCSC developers revised and refined the NCSC AA-AAS design using cycles of continuous feedback from state and center partners. Developers evaluated proposed designs through iterative item and test development steps, special studies, and pilot testing, all of which were central to the final NCSC assessment model implemented through the first administration of the operational test in spring 2015.

Prior to the start of item development, the development of CCCs to connect the LPFs to the CCSS took place and was led by NCSC with Partner State involvement.

3.1.1 The Learning Progression Frameworks

The LPFs present a broad description of the essential content and general sequencing for student learning and skill development (Hess, 2010). The LPFs show the pathway that students typically take toward mastering skills for college and career readiness, as they move through the grades. The LPFs provide the educational logic to help move students with the most significant cognitive disabilities along with their peers in an educationally sound way. Experts at NCSC looked at these learning targets together with the grade-level
content expectations from the CCSS to identify and clarify the most salient grade-level, core academic content to guide instruction and assessment of students with the most significant cognitive disabilities from kindergarten through high school. This academic content is referred to as the CCCs. The CCCs identify the academic content designed to frame instruction and assessment while retaining the grade-level content focus of the CCSS and the learning targets of the LPFs. Each CCC represents a teachable and assessable part of the content. Related CCCs are addressed during instruction to create deeper understanding of grade-specific academic content. The CCCs are specifically intended to promote success as students advance with their peers without disabilities from grade level to grade level. They are the starting point for instruction, not necessarily everything an individual student can and should learn.

3.1.2 Core Content Connectors

The CCCs were defined by NCSC as the academic content designed to frame the instruction and assessment of students with the most significant cognitive disabilities. The CCCs create a connection between the LPFs and CCSS for students with the most significant cognitive disabilities. The CCCs illustrate the necessary knowledge and skills students with the most significant cognitive disabilities need to reach the learning targets within the LPFs and the CCSS. This identified core content serves as a connection or stage between the LPFs (designed for typically developing students) and the CCSS (which define grade-level content and achievement). The CCCs are intentionally dually aligned with both. The CCCs identify academic content in each subject area to guide instruction for students in this population and for alternate assessment. The CCCs are designed to contribute to a fully aligned system of content, instruction, and assessment that focuses on the core content, knowledge, and skills needed at each grade to ensure success at the next grade level.

The CCCs preserve the sequence of learning outlined in the LPFs to the extent possible while deconstructing the progress indicators (which describe concepts and skills along the learning continuum for each grade span in the learning progression) into teachable and assessable segments of content. The connectors and corresponding Curriculum Resource G uides were developed to help promote how students can engage in the CCSS while following the LPFs. Table 3-1 shows a series of CCCs within one big idea across multiple grades for the mathematics strand of geometry to demonstrate the academic content sequence that is maintained by the CCCs.

Table 3-1. 2016-17 MSAA: Example of the Core Content Connectors, Developed by NCSC, Across Grades-Mathematics Strand: Geometry Big Idea: Shapes and Figures-Their Attributes, Properties, and Corresponding Parts

	Grades K-2	Grades 3-4	Grades 5-6	Grades 7-8	HS
	K.G.M1a1 Recognize twodimensional shapes (e.g., circle, square, triangle, rectangle) regardless of orientation or size	3.GM.1h1 Identify shared attributes of shapes	```5.GM.1a1 Recognize properties of simple plane figures```	7.GM.1e Construct or draw plane figures using properties	H.GM.1e Make formal geometric constructions with a variety of tools and methods
	K.GM.1a2 Recognize twodimensional shapes in environment regardless of orientation or size	4.GM.1h2 Classify twodimensional shapes based on attributes (\# of angles)	5.GM.1b1 Distinguish plane figures by their properties	8.GM.1g1 Recognize congruent and similar figures	H.GM.1b Use definitions to determine congruency and similarity of figures
	K.GM.1a3 Use spatial language (e.g., above, below) to describe twodimensional shapes				
	2.GM.1a4 Identify twodimensional shapes such as rhombus, pentagons, hexagons, ovals, equilateral, isosceles, and scalene triangles				

The CCCs reference the Learning Progressions F rameworks D esigned for Use with the Common Core State Standards in M athematics K-12 (Hess, 2010). The letter/number in each box provides a crossreference to the letter/number in the original learning progressions. For example, H.GM.1b is based on an original progress indicator within the progression that stated, "Using congruence and similarity relationships to solve problems, including triangle congruence relationships." The letter/number shows the grade level (in this case, high school), the next letters show the content (e.g., geometry), and the rest of the code relates to where the connector falls in the progression. For example, for 3.GM .1h1, the 3 means third grade, the GM means geometry, the 1 h relates to the specific progress indicator in the original learning progression, and the 1 means that it is the first in a series of connectors.

Table 3-1 shows how learner understanding builds across years. For example, in the second row, the student recognizes shapes, then compares shapes based on attributes, then distinguishes plane figures by properties, then recognizes congruent/similar figures, and finally by high school can use definitions to
determine congruency/similarity of figures. These skills all promote the big idea about shapes- their attributes, properties, and corresponding parts (W akeman, Lee, \& Browder, 2012).

3.2 Alignment and Linkages

Evidence that test content reflects the concepts that were meant to be measured is one of the critical sources of information necessary to support valid interpretations of test scores (AERA et al., 2014).
A lignment is about coherent connections across various aspects within and across a system (Forte, 2013a, 2013b). Traditional alignment procedures describe the degree of intersection, overlap, or relationship among content embedded in state content standards, assessment, and instruction (W ebb, 1997).

A s part of the assessment development process, NCSC conducted a series of studies to answer several key questions related to the alignment of the assessment. These efforts were meant to ensure that students' scores can be interpreted as reflecting the knowledge and skills defined in the standards and claims. The alignment questions were:

1. What is the degree of alignment between the CCCs and the grade-level CCSS?
2. W hat is the degree of alignment between instructional student learning expectations and measurement targets?
3. To what degree do the assessment tasks and items align to the grade-level CCSS?
4. To what degree do the assessment tasks and items align to the performance level descriptors (PLDs)?
5. How well do the claims align with grade-level content and provide useful information for tracking student progress tow ard achieving the knowledge and skills in the grade-level standards?
In order to address the five alignment questions various studies were conducted betw een 2012 and 2015 at different points in the development process to ensure system coherence. The following table summarizes the study, when it was conducted, and the alignment question being addressed.

Table 3-2. 2016-17 MSAA: Studies Related to Evidence of System Coherence

Study	Conducted	Claim for which evidence is provided
	Mathematics - Summer	The content and skills in the CCCs represent an
Relationship	2012; Reading - Winter Studies	2013; Writing; Summer 2013
level CCSS. Evidence for alignment question \#1.		

Study	Conducted	Claim for which evidence is provided
Task/ltem		
Alignment Study	Summer 2015	The content and skills assessed by the NCSC AA- AAS represent an adequate and appropriate sample of the grade level CCSS. Evidence for alignment question \#3.
Item Mapping	Summer 2015	The score reports are accurate and support appropriate inferences about student knowledge and skills. Evidence for alignment question \#4.
Study	Summer 2015	The targets for measurement provide information useful for tracking student progress in the CCSS and to teachers for providing instruction focused on academic expectations. Evidence for alignment question \#5.
Study		

Summary of Alignment Studies Evidence and Findings

To ensure system coherence the studies were conducted to gather evidence at key points in the early development process. The following is a summary of evidence organized by the alignment questions.

1. W hat is the degree of alignment betw een the CCCs and the grade-level CCSS?

NCSC first investigated the relationship between the CCCs and the CCSS as articulated by the L earning Progressions Frameworks (A lignment Question \#1). The results from the M athematics, Reading, and Writing Relationship Studies indicated that the prioritized academic grade-level content targets and their alignment to intended college and career ready standards was strong with regard to content centrality, performance centrality, and DOK.
2. W hat is the degree of alignment between instructional student learning expectations and measurement targets?

To provide evidence for the evaluation of the Alignment Question \#2, NCSC investigated the degree of coherence among system indicators and between system indicators and NCSC's overarching content claims. Study results indicated that a few gaps existed between the measurement and instructional targets, but overall the results suggested a strong connection between the focus of instruction and assessment.
3. To what degree do the assessment tasks and items align to the grade-level CCSS?

A s evidence for the evaluation of A lignment Question \#3, all tasks and items referenced grade-level content, and panelists rated over 90% of the items as having a far (partial) or near (full or complete) link to the content targets. A majority of the items (93% in ELA and 89% in mathematics) maintained the performance expectations found in the academic grade-level content targets. M ost of the items' DOK ratings were in the middle of the DOK distribution. The focal K SA s and Essential U nderstandings had a strong link, in both content and performance, to the academic grade-level content targets. Overall, there was strong coherence among the operational tasks/items and the content targets for both ELA and mathematics, and there
was strong vertical coherence in skills assessed by the items across the grade levels. Evidence supported that the assessment's operational items allowed students using various communication modes and with specific characteristics to access the items. Panelists indicated that the items were suitable for students who used various communication modes, and panelists indicated that no modifications were necessary to enable student access to the test items.
4. To what degree do the assessment tasks and items align to the performance level descriptors (PLDs)?

To provide evidence related to A lignment Question \#4 related to the assumption that the score reports are accurate and support appropriate inferences about student knowledge and skills, NCSC conducted the Item M apping Study to examine the extent to which the PL Ds reflected what students had the opportunity to show evidence of, at varying levels, through their performance on the assessment. The focus of this study was on collecting evidence regarding the connections between the knowledge and skills the NCSC AA-AAS items measure and the description of student performance within and across categories of the PLDs. In general, results from the Item M apping Study indicated that the knowledge, skills, and abilities captured by the items corresponded to and represented the content NCSC intended to measure, with minimal gaps in the information the assessments provided relative to the PLDs.
5. How well do the claims align with grade-level content connectors and provide useful information for tracking student progress toward achieving the knowledge and skill in the grade-level standards?

NCSC designed the V ertical Coherence Study to investigate the links between the measurement model, the instructional model, and the content claims, which represent the overarching focus for learning and assessment across the NCSC system. Specifically, the study assessed the links between the focal K SA s/Essential U nderstandings (measurement) and the content claims, and the links between the student learning expectations (instruction) and the content claims. The results indicated that the mathematics and ELA focal KSAs/Essential Understandings provided evidence in support of the claims, and that the mathematics and ELA student learning expectations provided evidence in support of the claims. In addition, study panelists agreed that the focal KSAs/Essential Understandings and student learning expectations provided evidence of strong coherence between the measurement model and NCSC's long-term outcome of college, career, and community readiness as expressed in the content claims. Results from the study confirmed that the learning expectations provided to teachers to guide instruction were connected to the expectations used to guide development of the NCSC AA-AAS.

Further detail regarding the alignment reports and evidence of findings is available in the 2014-15 NCSC Technical Report.

3.3 Assessment Design

3.3.1 Operational Design

The operational M SAA program was designed to produce valid and reliable mathematics and ELA (reading and writing) scores. The mathematics and reading portions of the test are composed primarily of selected-response items. In mathematics, all grade levels, except for grades 6 and 7, also included constructed-response items. For the 2016-17 assessment, writing was composed of only selected-response stand-alone items.

The items utilized in the assessment vary in complexity. There were a variety of tier levels used. Items were built as item families where each tier within the family addressed both the content complexity and the degree of scaffolding and support provided with the items. Each item family provides four decreasingly complex versions (items) of the task referred to as Tier 4 (most complex), Tier 3 (less complex), Tier 2 (less complex than Tier 3), and Tier 1 (least complex). A dditional detailed information about the item development is available in section 3.3.3 of Chapter 3.

For the 2016-17 assessment, three two-stage adaptive field-test forms were developed for both ELA and mathematics to accommodate the inclusion of field-test items within Session 1 for each content area. The forms followed guidelines informed by the respective content-area test blueprints. Each form contained 9-10 field-test items embedded in Session 1. The operational items were the same across the field-test forms. Specifically, the operational items consisted of two sessions. Session 1 was taken by all students, and Session 2 consisted of V ersion A, V ersion B , and V ersion C . V ersion C was intended to be slightly more complex and difficult than V ersion B, and V ersion B was intended to be slightly more complex and difficult than V ersion A. There were, thus, three possible paths for a student to take through the multistage test. All students took Stage 1, and, depending on how well they performed on Stage 1, they were routed to either 2A, 2B, or 2C. For 2016-17 there was a high level of overlap between the items in each version, but there were slight variations to ensure the distinction. ELA also included a Session 3 for the purposes of field-testing a writing prompt. A Tier 2 writing prompt was included for field-test Forms 1 and 2, and a Tier 3 writing prompt was included for Form 3. Figure 3-1 below is a visual demonstration of the three two-stage adaptive field-test forms that were developed, which shows the distribution of tiers that were used. These three paths (Stage 1 plus Stage 2A, Stage 1 plus Stage 2B, and Stage 1 plus Stage 2C) for the operational assessment are the same for each of the three field-test forms, as can be seen in the diagram.

Figure 3-1. Stage Adaptive Field-Test Forms

Stage 2 versions identical across all forms

3.3.2 Operational Core Items and Embedded Field-Test Items

The items on each of the forms were reviewed by Psychometrics for any validity and reliability concerns.

The mathematics tests consisted of 35 operational items across the testing sessions per grade, with 10 additional field-test items as shown in Table 3-2:

Table 3-3. 2016-17 MSAA: Mathematics Items

Grade	Total Operational Items (administered to each student)	Field-Test Items (total across three field-test forms)
3	35	30
4	35	30
5	35	30
6	35	30
7	35	30
8	35	30
11	35	30

Each field-test form had 10 different field-test items for a total of 30 field-test items across the three field-test forms. For the operational assessment, each student was administered 35 operational items,
consisting of 15 Stage 1 items and 20 Stage 2 items. Three versions of Stage 2 were developed. There were a number of items that were the same across Stages $2 \mathrm{~A}, 2 \mathrm{~B}$, and 2 C in Tier 2 and Tier 3. There were 10 items that overlapped between Stages 2A, 2B, and 2C for mathematics.

The ELA operational tests administered 32 operational items to each student across the two operational stages of the multistage test, with 9 additional selected-response field-test items and 1 additional writing prompt field-test item as shown in Table 3-3.

Table 3-4. 2016-17 MSAA: ELA Items

Grade	Total Operational Items (administered to each student)	Selected-Response Field-Test Items (total across three forms)	Writing Prompt Field- (total across three forms)
3	32	27	2
4	32	27	2
5	32	27	2
6	32	27	2
7	32	27	2
8	32	27	2
11	32	27	2

Each field-test form had 9 different field-test items for a total of 27 field-test items across the three field-test forms. For the operational assessment, each student was administered 32 operational items, consisting of 15 Stage 1 items and 17 Stage 2 items. Three versions of Stage 2 were developed. There were a number of items that were the same across Stages $2 \mathrm{~A}, 2 \mathrm{~B}$, and 2 C in Tier 2 and Tier 3 . There were 2 passage sets and 2 writing items (stand-alone), for a total of $12-13$ items, that overlap between Stages $2 \mathrm{~A}, 2 \mathrm{~B}$, and 2 C for ELA.

The field-test items were selected from items developed in 2016. During the item development process, these items followed a typical development cycle, including reviews by M SAA State Leads and by Item Content and Bias and Sensitivity panelists. The 2016-17 field-test items were selected based on the following criteria:

- Items represented a variety of tier levels.
- The writing stand-alone items were at various tier levels.
- The passage topic or writing topic was unique to the form.
- The passage topic and genre provided greater variety across the forms.
- The passage and item content were engaging, accurate, and free of regional bias.

All constructed tests, as well as the field-test items, were posted on a secure FTP site for the Test Construction and DTA Revisions Subcommittee review and approval. A webinar was held with the M SAA subcommittee to explain the constructed sets process and to review the Test Construction Design document, which provided information specific to each content area about the operational items selected and the field-
test items selected to meet the M SAA two-stage adaptive design. The M SAA subcommittee then had an opportunity to review the constructed sets and provide input and final approval.

3.3.3 Item Design and Administration

The M SAA item design and administration is designed to capture student performance at different levels of skill acquisition. The assessment items incorporate important aspects of item design related to both varying levels of content complexity and the degree and type of scaffolds and supports. The M SAA Partners followed NCSC's intentional assessment development process to address the targeted grade-level academic content linked to evidence-based curricular and instructional materials, and resulted in useful information for educators and families.

The M SAA content development processes addressed levels of cognitive and language complexity, specifically addressing the States' Content Standards, and the heterogeneous characteristics of the target student population. The assessment items vary systematically in complexity yet remain aligned to the focal knowledge, skill, and ability (FK SA) behind the CCCs, which were designed to capture student performance through two specific item design features: (1) levels of content complexity, and (2) degrees and types of scaffolds and supports. Items were built as item families where each tier within the family addressed both the content complexity and the degree of scaffolding and support provided with the items. The items were written intentionally to measure a range of academic abilities within the target population. The array of item characteristics to facilitate varying student needs includes reminders, examples, and models. These are provided to focus the student on the task and elicit a response without guiding the student's response.

Overall Item Structure

M ultiple item families were developed for each CCC. An item family is a cluster of items that are specific to one CCC and contains one item from each tier level, for a total of four items. Each tier provides variable features and supports that provide multiple entry points for a variety of students to demonstrate their FK SAs. All items in an item family assess grade-level academic concepts defined by either the FK SAs or Essential Understandings (EUs).

E ach item family provides four decreasingly complex versions (items) of the task referred to as Tier 4 (most complex), Tier 3 (less complex), Tier 2 (less complex than Item 3), and Tier 1 (least complex).

The guidelines used in M SAA item development for graduated complexity of the items within a task were developed and implemented in the initial design phase of NCSC. These guidelines were used to create items of graduated complexity that address the same FK SA but provide increased levels of support and/or decreased levels of complexity so that students with different levels of cognitive ability are able to access the content. In addition to the tier-specific item content, all items include an introductory sentence and teacher directives.

Overall Item Types

Item types were developed with M SAA Partner-approved item specifications. M SAA item specifications are consistent with design patterns and task template guidelines that were originally developed by NCSC. The item types that have been developed include selected-response, multiple-part selectedresponse, constructed-response, and open-response.

Selected-response items are multiple-choice items where a student selects a response from three options (two options at Tier 1) and the answer is worth 0 or 1 point. M ultiple-part selected-response items are multiple-choice items that are clustered together and connected to a single CCC. For each item, the student selects a response from three options (two options at Tier 1), and the answer is worth 0 or 1 point. The overall cluster is worth more than 1 point. There are two- and three-part items. A typical example of a multiple-part selected-response item would be an initial item in the cluster that asks the student to identify the main idea and then a second item that asks for a supporting detail. M ultiple-part selected-response items exist in ELA, but do not exist in mathematics. The M SAA item specifications and tier guidelines for mathematics direct test developers to address CCCs with multiple components with unique items. Therefore, a CCC that might ask a student to identify and solve an equation would have items written that require the student to identify the correct equation for a word problem and items written that require the student to solve an equation.

Constructed-response items require the student to interact in some way with response information to provide a response. In the case of the constructed-response mathematics items, all items are worth 0 or 1 point because the items ultimately ask the student to show whether he or she understands a single concept; therefore, a $0 / 1$ point score assignment is appropriate. For 2016-2017, there are no operational ELA constructed-response items.

The writing open-response field-test items have been developed such that the student is required to compose a permanent product. The student response is evaluated against a grade- and tier-specific rubric. W riting open-response items were developed for Tiers 3 and 2 only. In 2016-2017, both of these tiers were field-tested in each grade.

Administration

Test administrators (TAs) could begin with either the mathematics test or the ELA test. Once a content-area test was started, TA s were required to complete that test before beginning the test in the other content area. E ach content-area test consisted of a set of testing sessions. Students were administered the test sessions in order for a given content area. ELA consisted of three test sessions and mathematics consisted of two test sessions at each grade level, as shown in Tables 3-4 and 3-5.

Table 3-5. 2016-17 MSAA: ELA Test Sessions

Session 1: ELA	Session 2: ELA	Session 3: ELA - Writing Prompt
Literary and informational reading passages and associated selected- response reading items	Literary and informational reading passages and associated selected- response reading items	One constructed- response writing item (field-tested)
Selected-response writing		
stand-alone items		

Table 3-6. 2016-17 MSAA: Mathematics Test Sessions

Session 1: Mathematics	Session 2: Mathematics
Selected-response mathematics items	Selected-response mathematics items
Constructed-response mathematics items in selected grades	Constructed-response mathematics items in selected grades

3.3.4 Item Components

3.3.4.1 Selected-Response: Reading, Writing, Mathematics

Selected-response items are presented to students in a standardized and consistent format. All directions and materials needed for administering selected-response items are in the secure Directions for Test Administration (DTA) that accompanies each test form. Every item is presented in the following order:

- Item stimulus (which may include a passage, passage part, picture, graphic, or other illustration)
- Item question
- Response options presented in stacked, or vertical, formation

Students select a response from the options and may do so in a variety of ways (e.g., using the computer mouse, verbalizing, gesturing, using eye gaze or communication devices, using assistive technology). Students enter responses into the M SAA system. If the student has the scribe accommodation, the scribe enters the student-selected response on behalf of the student.

3.3.4.2 Constructed-Response: Mathematics

The constructed-response items, in selected grades for mathematics, require students to develop an answer instead of selecting an answer from response options. Constructed-response items are presented as novel tasks using materials and content presented in a test format that allows the TA to print out materials and
manipulatives for the student to interact with. E ach item is presented to the student in a standardized, scripted sequence of steps culminating in the TA scoring the student performance using the M athematics Scoring Rubrics. The M athematics Scoring Rubrics provide scoring standards that must be used to evaluate student responses. Directions and materials needed for administering mathematics constructed-response items are included in the secure DTA accompanying each mathematics test form. The TA enters the student constructed-response score into the M SAA system.

3.3.4.3 Constructed-Response: Writing

The field-tested constructed-response writing item requires students to produce a permanent product in response to a writing prompt. The student, or a scribe, records the response to the writing prompt either on the response template that is in the online M SAA system or on the paper response template that is included in the writing DTA .

The constructed-response writing item is presented to the student by the TA in a standardized, scripted sequence of steps and includes directions to present grade- and prompt-specific writing stimulus materials that need to be printed and prepared. All writing stimulus materials, including the response template, are identified by a card number and are included in the writing DTA. If the student uses a paper version of this template to write a response, the TA will:

- annotate or interpret the student's writing directly on the student's written product if the TA determines that a novel reader (i.e., a scorer) may not be able to interpret a component (e.g., inventive spelling, penmanship, or use of symbolic expressions) of the student's written product.
- transcribe or type exactly the student's written response, including any annotations, into the M SAA system.

N ote: If the TA determines that a student can enter an online response using a keyboard, a printed response template does not need to be used during the administration.

Information related to preparation and the standard administration of the constructed-response writing item is included in the DTA.

3.4 Content and Blueprints

The test blueprint followed by M SAA was consistent with the original NCSC Theory of Action, the evidence-centered design undertaken to develop the summative assessment, and best practices in educational measurement. Tables 3-6 and 3-7 show the broad targets developed to guide the item development process and to inform test construction. They provide general guidance for identifying areas of emphasis in the development of the mathematics and ELA multistage tests. The blueprint tables in A ppendix C incorporate the overall content distributions used for the development of the operational tests. Each grade level/content area is represented by a table that first describes the domain (e.g., operations and algebraic thinking) or text
type (e.g., reading informational text), weights by domain and ELA strands and text types, CCC, item types, and number of items. The items for each multistage test in each grade and content were revisited following the operational assessment window to balance both the content requirements of the blueprints and the psychometric characteristics of the items. The core set of operational items on each multistage test was established from this balance.

Table 3-7. 2016-17 MSAA: Guidelines for Distribution of Mathematics Content by Grade Level

Math Content Category	Gr 3	Gr 4	Gr 5	Gr 6	Gr 7	Gr 8	Gr 11
Operations and Algebraic Thinking	30%	30%	10%				
Number and Operations Base Ten	20%	10%	40%				
Number and Operations Fractions	20%	30%	20%				
Measurement and Data	20%	20%	20%				
Geometry	10%	10%	10%	10%	20%	30%	10%
Ratio and Proportions				30%	40%		
Expressions and Equations				20%	10%	20%	
The Number System			30%	20%	10%		
Statistics and Probability			10%	10%	20%	20%	
Functions					20%		
Algebra and Functions						50%	
Number and Quantity							20%

Table 3-8. 2016-17 MSAA: Guidelines for Distribution of ELA Content by Grade Level

ELA Content Category	Gr 3	Gr 4	Gr 5	Gr 6	Gr 7	Gr 8	Gr 11
Reading Literary	38%	41%	41%	41%	38%	34%	38%
Reading Informational	44%	41%	37%	41%	44%	44%	$41-44 \%$
Reading Vocabulary	9%	9%	13%	9%	9%	13%	$9-13 \%$
Reading Foundation	0	0	0	0	0	0	0
Writing	9%	9%	9%	9%	9%	9%	9%

3.4.1 Mathematics

M athematics items are aligned to prioritized CCCs, which are in turn connected to the CCSS and States' Content Standards, as well as the LPFs. M athematical knowledge is assessed across the CCCs through selected-response items and constructed-response items. Constructed-response items were present at grades 3, $4,5,8$, and 11 only. The need for constructed-response items was determined by the FK SA associated with a given CCC. Students might construct a graph, solve a problem, or complete a table in a constructed-response item. Constructed-response items were scored dichotomously, or "correct/incorrect," only.

In some cases, the selected FK SAs were best addressed by separating the skill into two parts. Therefore, two unique items are necessary to fully address a single content standard. For example, the CCC
8.DPS.1h1 asks students to both graph bivariate data using scatter plots and identify possible associations between the variables. Items were developed to address both parts of the standard. Tables in A ppendix C identify which CCCs require two item versions.

In addition, in mathematics, there were items identified as not allowing the use of calculators in responding to the item. These items tended to be related to computation, where the construct being assessed would be masked by the use of a calculator.

3.4.2 English Language Arts

ELA items in reading and writing are aligned to prioritized CCCs, which are in turn connected to the CCSS and States' Content Standards, as well as the LPFs. The distribution of ELA items related to various text types (e.g., literary, informational, and argument) aligns to the text type emphasis in reading and writing outlined in the CCSS and States' Content Standards.

For M SAA all reading comprehension assessment items are presented in a selected-response format. Thus, to measure more complex reading skills, some selected-response items are presented as a set of two or three sequenced items ("multipart"), which, when combined, serve to measure the breadth of one prioritized content standard. In other words, in some instances the FK SA s aligned to a specific CCC are designed to have two or three selected-response items associated with them.

In grades 5-8 and 11, some prioritized content standards require evaluation of content across more than one passage. These skills are measured using "paired passage sets." All paired passages are written in the informational text type.

The three CCCs prioritized for writing at each grade level consist of one CCC assessed by a constructed-response item and two assessed by selected-response items. The selected-response writing items are designed to assess discrete basic writing skills. These are considered stand-alone writing items. The constructed-response writing items are designed to measure a student's ability to generate a permanent product to represent organized ideas specific to a writing mode, supported with details or facts to develop those ideas or clarify meaning, and the use of standard English conventions. For the 2016-17 assessment, writing was assessed through the use of selected-response writing stand-alone items, and the constructedresponse writing items were considered field-test items and did not count toward the student's score.

CHAPTER 4 TEST DEVELOPMENT

4.1 General Philosophy and Role of Item Development Subcommittee in Test Development

As noted previously, M SAA is a comprehensive assessment system designed to promote increasing higher academic outcomes for students with significant cognitive disabilities in preparation for a broader array of post-secondary outcomes. M SAA assesses ELA and mathematics at grades 3-8 and 11, and is aligned through the State Content Standards and the M SAA Core Content Connectors (CCCs). M SAA is a computer-based, on-demand, two-stage adaptive assessment consisting mostly of selected-response and some constructed-response items written at four levels of complexity. These complexity levels represent different levels of skill acquisition by students. Students with significant cognitive disabilities often need materials and instructional strategies that are substantially adapted and scaffolded, and that have built-in supports to meet their individual needs.

The M SA A items on the 2016-17 administration were from the previous NCSC 2014-15 administration and/or the 2015-16 M SAA administration. A s described in Chapter 3, the items selected as field-test items were developed by M SAA. The item development process was an iterative one, which allowed for multiple opportunities for review of the items by various stakeholders including M SAA State Leads, content experts and Partner State representative reviewers that were selected by M SAA State Leads, and external passage and item content and bias review participants. The list of participants from the item content and bias review are included in A ppendix D. The Item Development Subcommittee, which was made up of the M SAA State Leads, provided overall direction and guidance regarding field-test item development. This multistage development and review process provided ample opportunity to evaluate items for their accessibility, appropriateness, and adherence to the principles of Universal Design. In this way, accessibility emerges as a primary area of consideration throughout the item development process. This is critical in developing an assessment that allows for the widest range of student participation, as educators seek to provide access to the general education curriculum and foster higher expectations for students with significant cognitive disabilities.

CHAPTER 5 TRAINING AND ADMINISTRATION

5.1 Test Administrator Training

The M SA A Partners adhered to the premise from the testing standards (AERA et al., 2014) that a key consideration in developing test administration procedures and manuals is that the test administration should be fair to all examinees. When all test administrators are utilizing the same, well-defined administration procedures, the provided training, manuals, and supporting documents, administration is standardized and fair to all examinees. As M SA A was a computer-administered test, the administration procedures were consistent with the hardware and software requirements of the test specifications. M SAA required completion of training by all test administrators (TAs) to support standardized test processes and procedures. M SAA provided ancillary testing materials outlining specific practices and policies including (a) the Test Administration M anual (TAM); (b) M SAA Online Test Administration Training; (c) M SAA O nline Assessment System U ser Guide for Test Administrators; (d) M SAA Online Assessment System User Guide for Test Coordinators, and (d) grade- and content-specific Directions for Test Administration (DTA). TAs received both the online training and the supporting documents to ensure fidelity of implementation and the validity of the assessment results as well as to help M SA A prevent, detect, and respond to irregularities in academic testing and maintain testing integrity practices for technology-based assessments.

5.2 Test Administrator Training Modules

The online training modules for TAs were made available prior to the beginning of the testing window and throughout the testing window. They were customized to address the specific responsibilities of the TA and to provide important information from the three documents TA s were required to use: the (1) TA M , (2) DTA , and (3) M SAA O nline Assessment System U ser Guide for Test Administrators. M SA A subcommittees heavily revised the above-mentioned materials to provide more comprehensive resource documents and trainings. During the revision process, the M SA A M anuals, User Guides, and Training Subcommittee worked to reduce redundancy and provide clear, consistent instruction for the administration of the M SAA. This work resulted in a reduction of modules from 13 modules in 2016 to 6 shorter modules (see Table 5-1) in 2017 (i.e., The run time reduction of modules was not a result of combining the 13 modules to form 6 longer modules. Each module was limited to approximately 25 minutes.).

Table 5-1. 2016-17 MSAA: Modules for Test Administrators

Module 1: MSAA Overview
Module 2: Test Design and Experience
Module 3: Navigating the MSAA Online Assessment System
Module 4: Completing the Student Information
Module 5: Accessibility Features and Accommodations
Module 6: Student Response Check and Early Stopping Rule

All online training recordings were accessed by TAs through the M SAA system. It was a requirement that the online training modules be viewed in sequence, and one module had to be viewed before the link to the subsequent module would become accessible. Once a module was accessed, that module would be marked as complete in the M SAA system and the link to the next module in the sequence would become available. Once all six modules were marked as complete, a final quiz became available to TA s within the M SAA system.

There were quiz questions pertaining to information from the module at the end of each online training module for TAs and Test Coordinators (TCs). The quiz questions were included as a review of the content to prepare TA s for the final quiz, which was accessed via the M SAA system following completion of all online training modules.

TA s were required to take the final quiz, which covered content across all modules, and had to obtain a score of 80% or higher to be provided access to secure test administration materials. If TA s did not fulfill this certification requirement, they were not allowed access to the secure test materials. The TA s were notified within the M SAA system whether or not they passed the final quiz. TA s were allowed multiple attempts to obtain a score of 80% or higher on the final quiz. In addition to the module trainings, TAs were instructed to become familiar with the online system by accessing the sample items supplied within the system. M SAA utilized the same set of sample assessment items developed by content and measurement experts for teachers, administrators, and policymakers for the NCSC assessment that were also used for the 2016 administration. No new samples were introduced. The sample items did not address all assessed content at each grade level and were not representative of every item type. R ather, the sample items provided a preview of the array of items and illustrated multiple item features supporting ways in which students with a wide range of learner characteristics interact with the assessment process.

5.3 Test Coordinator Training

M SAA requires completion of training by all TCs to support standardized test processes and procedures. M SAA provides ancillary testing materials outlining specific practices and policies including the (a) TAM ; (b) M SAA Online Test Administration Training; (c) MSAA Online Assessment System U ser Guide
for Test Administrators; (d) M SAA Online Assessment System U ser Guide for Test Coordinators; and (e) grade- and content-specific DTA. TCs receive both the online training and the supporting documents to ensure fidelity of implementation and the validity of the assessment results as well as to help M SAA prevent, detect, and respond to irregularities in academic testing and maintain testing integrity practices for technology-based assessments.

5.4 Test Coordinator Training Modules

In addition to the training modules for TA s described above, online modules specific to the role of TCs were made available prior to the beginning of the testing window and throughout the testing window. These training modules are customized to address the specific responsibilities of the TC and to provide important information from the documents TCs are required to use the (1) TAM and (2) M SAA Online Assessment System U ser Guide for Test Coordinators. Like the TA training modules, the TC training modules were also heavily revised based on the revisions made to the TAM , DTAs, M SAA Online Assessment System U ser Guide for Test Administrators, and M SAA Online Assessment System U ser Guide for Test Coordinators. The M SA A M anuals, User Guides, and Training Subcommittee worked to reduce redundancy and provide clear, consistent directions for the administration of the M SA A. This work resulted in the TC modules increasing from four modules in 2016 to six modules in 2017. The increase was due to the revisions of information in the module layout and in an effort to keep each module around 20-25 minutes (see Table 5-2).

Table 5-2. 2016-17 MSAA: Modules for Test Coordinators

Module 1: MSAA Overview

Module 2: Test Design and Experience
Module 3: Navigating the MSAA Online Assessment System
Module 4: Completing the Student Information
Module 5: Create Users and Orgs
Module 6: Student Response Check and Early Stopping Rule

All online training recordings were accessed by TCs through the M SA A system. It is a requirement that the online training modules be viewed in sequence, and one module has to be viewed before the link to the subsequent module will become accessible. Once a module is accessed, that module is marked as complete in the M SAA system and the link to the next module in the sequence becomes available. TCs are required to complete the online training for TCs but are not required to take a final quiz. At the end of each online training module for TCs are quiz questions pertaining to information from the module. The quiz questions are included as a review of the content.

5.5 Test Administration Manual

The M SA A TA M was heavily revised and reorganized in 2017 by the M SAA M anuals, User Guides, and Training Subcommittee for clarity, comprehensiveness, conciseness, and ease of use. The TAM was made available prior to the beginning of the testing window and throughout the testing window. The TAM provided an overview of and the guidelines for planning and managing M SAA administration for district and school personnel. A dditionally, the TAM defined the roles and responsibilities of the TA, TC, and State M SAA Coordinator who are involved in and oversee the administration of M SAA. Some important additions to the TAM in 2017 were

- the M SAA State Leads' Contact Information and Links;
- Important Dates;
- Service Center Support and hierarchy information for obtaining support;
- M SAA Test Experience-Stage A daptive;
- TA and TC Checklists for ELA and M athematics;
- Directions for Test Administration (DTA) samples; and
- the Student Response Check (SRC) and Early Stopping Rule guidelines and flowchart.

Each of these additions is explained in more detail on the following pages. For the purposes of this report, some content in the following sections was copied directly from the TA M for consistency.

5.5.1 MSAA State Leads

Intentionally positioned as the first page in the TA M , this section was new for 2017 and provided TA s and TCs with the State M SAA Coordinator and contact information, along with the appropriate state link for detailed information on state-specific policies created by each State M SAA Coordinator.

5.5.2 MSAA Technical Support

The M SA A Technical Support chart was placed as the second page of the TAM to provide examples of when and who to contact to obtain answers pertaining to the M SAA Online A ssessment System and test administration procedures. This section was revised to provide TA s and TCs with a clearer, preferred hierarchy for accessing MSAA support. Clear guidance was provided in both the TAM and training modules, directing both the TA and the TC to consult the TAM and user guides first for any questions or issues that arose. If a question or issue remained, a TA's first level of support was to contact his or her TC. If the TC could not resolve the question/issue or from where the question/issue generated, the TA and/or TC was directed to contact the M SAA Service Center. Lastly, TCs were instructed to contact their State M SAA Coordinator for further direction or instruction beyond the M SAA Service Center (e.g., state policies, M SAA Online A ssessment System change requests related to the school/district, appropriate organizations, new students, wrong name/email address).

5.5.3 Important Dates

The Important Dates page was another vital addition to the front portion of the TAM in 2017. This page was developed to provide a quick, hands-on reference for important dates pertaining to the test administration window; the ordering, shipping, and returning materials window (M aryland only); and the availability and location of training and test administration documents within the M SAA Online A ssessment System, for quicker access for both TA s and TCs.

5.5.4 How to Use the TAM

This section reviews the purpose of the TAM, how to access the hyperlinks and resources, and provides a list of terms and acronyms frequently used in the TAM and administration documents.

5.5.5 Introduction

The introduction provides information about the purpose of the M SA A. It outlines that the M SA A was developed for students with significant cognitive disabilities to demonstrate what they know and can do in relation to the State Content Standards and M SA A Partner States' long-term goal of ensuring that students with the most significant cognitive disabilities achieve increasingly higher academic outcomes and leave high school capable of pursuing a variety of post-secondary options, and that the M SAA has been designed to meet the requirements of the Every Student Succeeds Act (ESSA) and Individuals with Disabilities Education Act (IDEA).

5.5.6 Administration Procedures Overview

This section includes information and references on how and where to access the documents required for test administration. Table 5-3 outlines each document with the document's purpose and its primary user(s).

Table 5-3. 2016-17 MSAA: Who Can Perform Actions in the MSAA Online Assessment System?

Document	Purpose	User
Test Administration M anual (TAM)	Provides policies and procedures for TA s and TCs to prepare for the administration of the Test.	TAs and TCs

continued

Document	Purpose	User
Directions for Test Administration (DTA)	- Provides directions and scripts for each item of the Test (All test items are included in the DTA, but not all items will be administered to each student.) - Includes details about manipulatives required in order to administer a test item, such as calculators and counters - Includes reference sheets that contain important graphics - Includes scoring rubrics for mathematics CRs in grades 3,4, 5,8 , and 11 - Provides writing prompt script, mentor text (when applicable), graphic organizer, student response templates, and stimulus materials for all writing NOTE: The DTA is a secure document and available only when TAs complete the MSAA Online Training M odules and pass the Final Quiz.	TAs
MSAA Online A ssessment System User Guide for Test Administrators	Provides technical information and troubleshooting tips, plus step-by-step instructions to navigate the M SAA Online A ssessment System, such as how to complete the LCI; how to pause, resume, and submit a test for scoring; when to contact the M SAA Service Center; and how to administer the Student Response Check	TAs
MSAA Online A ssessment System User Guide for Test Coordinators	- Provides technical information and troubleshooting tips, - step-by-step instruction to navigate the M SAA Online A ssessment System (e.g., how to check that all TA s have completed their training), - how to ensure that all students are properly registered and have the correct grade levels, - how to ensure that all tests have been submitted for scoring, and - how and when to close a student test	TCs

A lso found in this section are the participation criteria, which reflect the pervasive nature of a significant cognitive disability and the descriptors, used by each student's individualized education plan (IEP) team to determine eligibility for participation in M SAA. Three criteria are named in particular: (1) The student has a significant cognitive disability, (2) the student is learning content linked to grade-level content standards, and (3) the student requires extensive direct individualized instruction and substantial supports to achieve measurable gains in the grade- and age-appropriate curriculum.

5.5.7 Who Can Administer the MSAA?

This section defines the roles of the TA, TC, and State M SAA Coordinator within the M SAA Online A ssessment System. Table 5-4 was added to the TAM to clearly identify who can perform actions in the M SAA Online A ssessment System.

Table 5-4. 2016-17 MSAA: Who Can Perform Actions in the MSAA Online Assessment System?

Action	Test Administrator	School Test Coordinator	District Test Coordinator	State Test Coordinator for M SAA	M SAA Service Center
Start, Pause, Resume, and Submit Tests	X	X	X	X	
Print DTA and Paper Test	X	X	X	X	
Complete Student LCI, SRC, and Accommodations Tabs	X	X	X	X	
Add or Edit TA		X	X	X	
Close a Test		X	X	X	
Add Classroom		X	X	X	
Add or Edit TC			X	X	
Add Student or Edit Student Demographic Information				X	
Unlock Test				X	X
Change Test Form Grade				X	X

In addition to the roles in the online assessment system, this section explains who can be a TA and who supports the administration process. Whoever serves as a TA must be a certified and licensed educator familiar with the student, typically the student's teacher, who has completed the required M SAA Test Administration Training, the end-of-module quizzes, and attained at least an 80% accuracy score on the final quiz. A Iternatively, if a student's teacher has a long-term substitute who is a certified and licensed educator, has completed the required MSAA Test A dministration Training and end-of-module quizzes, and attained at least an 80% accuracy score on the final quiz, then the long-term substitute may administer the test. Relevant state-specific criteria are also provided where applicable. Some M SAA Partner States have additional policies regarding who can administer the test and who can assist the TA ; TA s are referred to their state-specific policy information document to learn about any additional policies regarding who can be involved with administering the test.

TCs provide administration support by overseeing the administration of the test at the district or school level. Some M SA A Partner States have additional policies regarding who can fulfill the role of TC in their district or school as well.

To assist TAs and TCs with completing the requirements before, during, and after test administration, the Test Administrator Checklist and Test Coordinator Checklist were developed and added as an appendix of the TAM.

5.5.8 The MSAA Test Design

New in 2017, the M SAA became stage adaptive. The stage adaptive design for the Test provides the student with a test experience that assigns Session 2 of the assessment based on how the student responds to the operational items in Session 1. The versions in Session 2 vary by difficulty and complexity level. The student will take only the Session 2 version that is assigned to him or her.

Session 1 contains items with varying levels of complexity. It is important that students take items at all complexity levels in order for Session 2 to be an accurate reflection of the student's abilities. Once the student completes Session 1, the student will be directed to Session 2 for one of three versions of the testV ersion A, B, or C.
NOTE: It is possible that students in the same grade in the same classroom will take different versions of Session 2. It is also possible that the same student will, for example, take V ersion A for ELA and V ersion C for mathematics.

For ELA, after Session 2 V ersion A, B, or C is completed, all students are administered the field-test writing prompt in Session 3. M athematics has no Session 3.

Figures 5-1 and 5-2 outline the M SAA stage adaptive design for ELA and mathematics.

Figure 5-1. The MSAA ELA Stage Adaptive Design (All Grades)

Figure 5-2. The MSAA Mathematics Stage Adaptive Design (All Grades)

The item types used in the test include selected-response for ELA and mathematics, constructedresponse for mathematics, and the field-test writing prompt for ELA.

TA s and students can access multiple sample items for both ELA and mathematics prior to the beginning of the testing window. The sample items are located in the M SAA Online A ssessment System at http://www.msaaassessment.org/ under Resources. The sample items allow the TA and student to become familiar with the online item presentation and to test any assistive technology required. In addition to the online item samples, a reading and a mathematics sample item were added to the TA M and broken down for the TA.

5.5.9 Directions for Test Administration (DTA) and How They Are Used

This section provides TA s with the purpose of the DTAs, additional materials for test administration, and directions and guidelines for use. The DTAs were also heavily revised in 2017 to provide clear and consistent shared information across all DTAs and the TAM:

1. The directions for test administration provided in the TAM should be used along with the instructions and directions provided in the DTA for the Test assigned to the student. The DTA should be accessed and downloaded from the A ction button in the M SAA Online A ssessment System at http://www.msaaassessment.org/. Each DTA is specific to the form, or version, of the Test that is assigned to the student.

- Grey text in the directions provides instructions for the TA on what to point to in the items and should not be read aloud to the student.

2. Read the directions, passages, items, and answer option text exactly as written, using a consistent rate of reading and tone of voice, as appropriate.
3. Be familiar with and utilize the A Iternative Text, as appropriate. Alternative Text is written in italics and appears in brackets. Two types of A lternative Text are provided in the DTA :
a. A lternative Text for all students includes standardized descriptive statements for tables, charts, graphs, timelines, and math flow to be read aloud to all students.
b. A lternative Text for students who are blind or have visual impairments includes descriptive statements for tables, charts, graphs, and any other graphics necessary for appropriate
interaction with the items (e.g., an answer option that is a graphic with no accompanying text, or a graphic that provides contextual clues for a sighted student).

NOTE: If the Alternative Text for students who are blind or have a visual impairment is not read by the computer, the TA must read this text aloud to the student as indicated in the DTA.

Each DTA also provides specific clarity to a particular test.

5.5.10 Accessibility Features and Accommodations

This section identifies various ways the TA must provide each student an appropriate testing environment during every testing session. This includes:

- the two types of accessibility features that are (1) available to any student who benefits from the supports and (2) accommodations that must be included in the student's IEP prior to test administration
- timing and scheduling considerations because every student is different and has varying degrees of stamina and ability to stay on task. TAs may pause testing to take a break at any time. A test session for a student may consist of one or two items at a time, or 10 or more items. The Test is not timed and can be paused for a variety of reasons, including frustration, lack of engagement, refusal to participate, or sickness. The TA may pause and resume the administration of the Test as often as necessary during the whole administration window. A break may consist of a few minutes to a few days, depending on the student's needs. For some students, a break in their daily routine is very disruptive. For students who respond best to consistent routines, TA s may consider building M SAA time into their daily schedule beginning several weeks prior to testing. For example, 5 to 10 minutes during ELA instruction and 5 to 10 minutes during mathematics may improve the testing experience for the student. Using the M SA A practice items and/or introducing any vocabulary words the TA identified prior to testing can help establish this routine.
- how to support students prior to testing to ensure that students have equitable opportunity to access the items. The TA is directed to read the test items and DTA prior to the Test. The following are acceptable ways to prepare students prior to testing:
- review the vocabulary lists for ELA and mathematics to identify any words that may need to be introduced or reviewed with the student.
o Add and/or review any vocabulary words, phrases, and A Iternative Text with students using sign language, creating new tactile graphics or objects, or adding pictures or symbols to a word bank, word book, or other communication device.
- how to create a comfortable and secure testing environment includes, but is not limited to, the following:
o Restricting student access to resources that are explicitly identified in the DTA
o V iewing of test items only by the student taking the Test and the certified, licensed, and trained TA administering the Test
o Removing any devices or materials that could jeopardize test content in the testtaking environment or distract the student
o Ensuring a quiet test-taking environment, void of distractions, and one that does not permit other students to hear the responses to the items of the student being tested. This does not need to be a separate room or location in the school building
if the student is unfamiliar with that space. Students are often comfortable in a routine, and disrupting this routine could have consequences on their ability to focus on the Test. A secure and comfortable space could be a corner of the classroom where the TA and the student can work uninterrupted and in privacy. Other students may remain in the classroom but cannot interfere when testing is taking place. A dditional staff may be required in order for the TA to focus on the student being tested.
o Reviewing the assessment features and accommodations the student may need
o M aking sure the same computer (if using a computer administration), laptop, tablet, or other device is available for testing. This ensures that security of materials is maintained.
o Providing scratch paper for students to make notes or solve mathematics items. All scratch paper must be submitted to the TC for secure shredding.
o Providing appropriate student positioning, appropriate assessment features, and the accommodations in the student's IEP that are consistent with M SAA accommodations policies
o Providing encouragement to support student engagement and focus. TA s may use phrases that do not indicate either the correct or incorrect response. Examples of acceptable encouraging phrases include:
- "I like the way you are listening and following directions."
- "Only one more to go!"
- "J ust five minutes until a break!"
- "K eep working!"
- that physical prompting including hand-over-hand is not permitted and is considered to be an inappropriate test practice and a test irregularity

TA s are instructed to review the M SAA Online A ssessment System and assessment features before testing to ensure that the computer, laptop, or tablet; login information; and any necessary assessment features are working as intended. TAs must ensure that the computer or any AAC/assistive technology device a student may use meets the minimum requirements, is in working order, is available for testing, and is compatible with the M SA A Online A ssessment System before the student is assessed.

A nother change in the 2017 administration was the removal of open-response foundational reading items administered to students in grades 3 and 4. Because of this change to the test, the Procedures for A ssessing Students W ho A re Blind, Deaf, or Deaf-Blind: A dditional Directions for Test Administration was no longer necessary as a separate and secure document, and as such was consolidated and included in the Accessibility Features and A ccommodations section of the TA M for all students.

The accessibility features for the computer, laptop, or tablet administration, as well as for the paper administration, were refined for clarity as shown in Figures 5-3 and 5-4 below.

Figure 5-3. Accessibility Features: Computer, Laptop, or Tablet Administration
Answer

M asking Tool | The embedded Answer M asking tool allows students and TAs to electronically cover and |
| :--- |
| reveal individual answer options as needed. |

The embedded A nswer M asking tool allows students and TAs to electronically cover and reveal individual answer options as needed.
The embedded Line Reader tool allows the entire item to be shaded, and an adjustable box allows attention to be focused on one line or a few lines at a time. The box can be adjusted by the student or TA.
The student or TA can change the onscreen background color and/or text color based on need or preference. The options are:

Alternate Color Theme Tool

Audio Player Tool

Read Aloud by
TA

Alternative
 Text Read Aloud by TA

The embedded magnification tool increases the size of the text and graphics only in the selected area. The magnification tool is attached to the cursor so it will highlight any section the mouse hovers over.

Increase/ Decrease Size of Text and Graphics

Computers, laptops, and tablets provide zoom-in and zoom-out functions. Projection systems, video magnifiers, and smart boards may also be used to increase the size of the text and graphics. Zoom may also be used to reduce the size of the text or graphics in order to view more item information on one page.
Directions for the use of manipulatives are described in the DTA ; to the extent possible, these should be the tools the student uses during instruction. M anipulatives are not provided by M SAA because not all students use the same tools. Possible manipulatives and tools required for testing include:

1. Ruler, thermometer, clock, abacus, talking calculator, raised line graph/grid paper, tiles, blocks, etc.
2. Calculator. Each item includes information for the TA on whether a calculator is allowable. M ost items do allow the use of a calculator, but it is important to note which ones do not.
Tactile graphics are raised versions of print graphics that are adapted for the sense of touch (Guidelines and Standards for Tactile Graphics, 2010, Braille A uthority of North A merica). An example is the raised lines on a simplified image of the parts of a flower or on a mathematical
Tactile Graphics graph.
Tactile graphics may be used during the Test if they are already used by the student on a regular basis. R eview the vocabulary lists for ELA and mathematics prior to testing to ensure that students have time to learn and become familiar with any new tactile graphics. TA s are responsible for creating any tactile graphics the student may require. R efer to page 23 for guidance.

Figure 5-4. Accessibility Features: Paper Administration

Answer Masking

Line Reader

For students who require answer masking on the paper version of the Test, TA s should use paper or cards to cover and reveal individual answer options as needed.

Alternate C olor A cetate overlays in the color preferred by the student should be used. A nother option is to print the

Themes Test on paper that is the color preferred by the student.
 Increase/Decrease
 Size of Text and Graphics
 Paper versions of the Test can be projected by document projection devices or interactive white boards as needed by the student.

Increase V olume TA scan adjust the volume of their voice as necessary.
Magnification A ny handheld magnification device normally used by the student is acceptable.
The TA may read the directions, answer options, or passage as often as is reasonable to obtain a student's response to an item. All text must be read to students exactly as written, with no paraphrasing or word substitution.

Read Aloud by
 \author{ TA

}The TA or student can use two pieces of paper to limit attention to one or a few illuminated lines at a time, while blocking out the rest of the test item.
Read Aloud by
TA Alternative
Text

A lternative Text includes descriptive statements for graphics (e.g., tables, charts, graphs, timelines, etc.) that may need to be described verbally in order for the student to understand. Alternative Text is included in the DTA and should be read aloud by the TA as needed.

Directions for the use of manipulatives are described in the DTA ; to the extent possible, these should be the tools the student uses during instruction. M anipulatives are not provided by M SAA because not all students use the same tools. Possible manipulatives and tools required for testing include:

1. Ruler, thermometer, clock, abacus, talking calculator, raised line graph/grid paper, tiles, blocks, etc.
2. Calculator. Each item includes information for the TA on whether a calculator is allowable. M ost items do allow the use of a calculator, but it is important to note which ones do not.

T actile graphics are raised versions of print graphics that are adapted for the sense of touch (Guidelines and Standards for Tactile Graphics, 2010, B raille A uthority of North A merica). A n example is the raised lines on a simplified image of the parts of a flower or on a mathematical graph.
Tactile Graphics Tactile graphics may be used during the Test if they are already used by the student on a regular basis. Review the vocabulary lists for ELA and mathematics prior to testing to ensure that students have time to learn and become familiar with any new tactile graphics. TA s are responsible for creating any tactile graphics the student may require. Refer to page 23 for guidance.
Tactile symbols are concrete representations of objects or concepts developed for individuals who are blind or have a practical need for a graphic language system. For example, a seed within a textured triangle can represent a plant or a textured slanted line with a series of dots can represent a graph.
Tactile Symbols Tactile symbols may be used during the Test if they are al ready used by the student on a regular basis. Review the vocabulary lists for ELA and M athematics prior to testing to ensure that students have time to learn and become familiar with any new symbols. TA s are responsible for creating any tactile symbols the student may require. Refer to page 23 for guidance.
A n object or part of an object may be used to represent a person, place, object, or activity. For example, a silk flower petal, leaf, and stem may represent parts of a flower or interlocking centimeter

Object replacement may be used during the Test if it is already used by the student on a regular basis. Please review the vocabulary lists for ELA and M athematics prior to testing to ensure that students have time to learn and become familiar with any new objects. TAs are responsible for creating any objects the student may require. Refer to the following section for guidance.

TA s must review the DTA and the test items for both ELA and M athematics to determine which items and stimulus materials require tactile graphics, tactile symbols, or object replacements. Tactile graphics and symbols may be used when the student is not able to see graphics that are essential to understanding the item. Object replacements may be used when the visual and/or tactile graphics do not provide optimal accessibility to the student. Further guidelines for creating tactile representations and using object replacements are located in the TAM .

The allowable accommodations for the M SAA are defined as changes in the standard administration of the assessment that do not alter the construct being measured. A ny accommodation required by a student must be included in the student's IEP prior to testing, and should be used regularly during instruction. The allowable accommodations are listed and explained in Figure 5-5 below.

Figure 5-5. Allowable Accomodations
Students may use assistive technology devices for viewing, responding to, or interacting

Assistive Technology (AT) with the Test. The student and TA should use the AT device with the sample items to ensure that it functions properly with the M SAA Online A ssessment System. Refer to the M SA A Online A ssessment System U ser Guide for Test A dministrators for information about compatibility of the M SAA Online A ssessment System with assessment features.

A Paper V ersion of the Test may be downloaded and printed from the M SAA Online A ssessment System in PDF format. A fter testing, all printed assessment materials must

Paper Version

Scribe

Session 2 may be determined.
For students who use A merican Sign Language (A SL), Pidgin Sign English (PSE), or Sign Exact English (SEE), the TA may translate passages, items, answer options, and directions. Review the vocabulary lists for ELA and mathematics to determine which words the student may need practice with prior to testing.
Required Documents: It is important to adhere to the Sign Language Protocol in A ppendix C of the TAM as it will help signers avoid cueing the student.

5.5.11 Test Security and Test Irregularities

This section describes M SAA policies related to testing integrity and appropriate and inappropriate test practices. The importance of test security and the practices required for appropriate handling of secure test materials is explained, including the following:

- M aintain all printed test materials in a secure, locked location.
- Protect secure materials from view by other students, teachers, parents, school staff, or other individuals. This includes logging out of the M SAA Online A ssessment System and closing the browser after each testing session.
- Do not duplicate, reproduce, or share items or other secure test materials.
- Give all printed test items or other printed material to the TC for secure shredding.
- Delete any test materials, items, and information from the computer and any assistive technology used by the student after testing is complete.

TA s are required to ensure that all aspects of the test are maintained in a secure manner. TAs are informed that items are for the exclusive use of testing and are not to be used for instruction and are not to be shared, e-mailed, copied, or distributed in any manner. To do so is considered a test irregularity and a violation of test security.

To underscore the importance of appropriate test practices, this section provides specific examples of inappropriate and prohibited test practices, including, but not limited to:

- Failing to sign and submit your state's security agreement to the district
- A pplying the Early Stopping Rule (pages 34-35 [TAM]) for any reason other than Iack of an observable response
- Changing the wording of test directions, test items, answer options, or any text as it is written in the DTA
- U sing any materials not indicated in the DTA
- Providing students a preview of the Test at any time
- Providing answers, clues, or cues to students in advance of or during Test administration
- M anipulating testing materials in a way that hints at a correct or incorrect answer or reduces answer options
- C hanging a student's answer
- Using any of the MSAA test materials (including items and/or DTA) for instructional purposes
- Sharing test items, test content, or test forms, either written or verbally, or through photography, phone cameras, recording devices, note taking, or any other manner, with colleagues, other staff members, students, parents, media, or the general public
- Leaving the M SAA Online A ssessment System unattended while logged in to the Test or the DTA
- A dministering the Test by a staff member who has not completed the online training modules and passed the Final Quiz

This section emphasizes that each person participating in the state assessment program is directly responsible for immediately reporting any violation or suspected violation of test security or confidentiality. TA s and other staff are required to notify their school or district TC if they witness or become aware of an inappropriate test practice or suspect one has occurred.

5.5.12 TAM Appendix A: MSAA Scribe Accommodation Protocol

A ppendix A: M SA A Scribe Accommodation Protocol addresses the scribe accommodation for a student who has the Scribe A ccommodation where a scribe enters the student's answers into the M SAA Online A ssessment System. For the writing prompt, the scribe will record the student's response on the response templates in the MSAA Online A ssessment System. A scribe must have the following qualifications:

- Be a state-certified educator or district employee of the district
- Complete all training for the Test
- Sign and submit state test security agreements according to state policy
- Be familiar to the student
- Be familiar with all the accommodations in the student's IEP
- Scribe under the direction of a qualified, trained TA who is administering the Test

Scribes are expected to:

- Familiarize themselves with the Test prior to testing
- Familiarize themselves with the accessibility features and accommodations that are available on the Test
- K now and understand how to properly administer the accessibility features and accommodations that the student must receive
- Practice the scribing protocol before testing

5.5.13 Scribe Accommodation Protocol for ELA and Mathematics

- The scribe may not question or correct student choices, alert students to errors or mistakes, guide the student to a correct answer, or otherwise influence a student's answer or answer choice in any way.
- The student must be tested in a setting that does not permit his or her responses to test items to be heard by other students.
- The scribe will comply with student requests for use of all available and allowable A ssessment Features on the M SAA Online A ssessment System (e.g., when to turn a feature on or off, when to change the size of a graphic, etc.).
- A TA may provide answers to procedural questions (e.g., test directions, navigation within the test environment, etc.).
* For paper-based administration, the scribe must enter student responses directly into the M SAA Online A ssessment System.
- The scribe may ask the student to repeat a response.
- The scribe must allow the student to indicate when he or she wants to move to the next test item.
- The scribe must provide an opportunity for the student to review and modify what the scribe has recorded.
- A fter testing, the scribe must collect any scratch paper, graphic organizers, and other ancillary materials and give them to the TC for secure shredding. Neither the scribe nor the TA may keep any testing materials after testing is complete.

5.5.14 Scribe Accommodation Protocol for the Writing Prompt

- For computer-based administration, the scribe types exactly what the student communicates directly on the response template in the M SAA Online A ssessment System, including any necessary annotations.
- For paper-based administration, the scribe writes exactly what the student communicates on a Paper V ersion of the response template, and then the scribe transcribes exactly what was written into the M SAA Online A ssessment System, including any necessary annotations (refer to the section below regarding Procedures for Annotation).
- The scribe correctly spells all words (spelling is not scored).
- The scribe does not capitalize words or punctuate text unless indicated by the student.
- The scribe allows the student to edit for punctuation, capitalization, or other edits as described in the DTA.
- The scribe makes student-requested changes, even if incorrect.
* In the case of commonly confused homophones (e.g., than and then; to, two, and too; there, their, and they're), the scribe orally confirms the meaning of the word.
- A fter testing, the scribe must collect any scratch paper, graphic organizers, and other ancillary materials and give them to the school TC for secure shredding. Scribes and/or teachers may not keep any testing materials after testing is complete.

5.5.15 Procedures for Annotation

In cases in which a student's written product may not be easily interpreted by a novel reader (e.g., because of inventive spelling, hard-to-read penmanship, or use of symbols), the TA must write annotations directly on the student's written work or in the M SAA Online A ssessment System to ensure an accurate interpretation of a student's response. A nnotations must not alter the intent of the student's original response or make any comments or explanations about what the student wrote.

A fter the student has finished composing his or her written responses, the TA reads the student's response and does the following:

- M akes annotations that clarify the student's response.
- For annotations made directly on the student's work, uses a different color pen or pencil to distinguish from the student's original response.
- For annotations typed into the computer, insert brackets around them. For example: The cat were jpzing rl ht [jumping really high].
- W rites in parentheses directly following an uninterpretable word (e.g., inventive spelling) in the M SAA Online A ssessment System if the student typed a response.
- Provides an opportunity for the student to review and modify what has been annotated.

5.5.16 TAM Appendix B: Augmentative and Alternative Communication Guidelines

A ppendix B: M SAA A ugmentative and A Iternative Communication Guidelines explains that the TA must record the student's response(s) for all constructed or open-ended responses either on the paper version of the test or directly into the M SAA Online A ssessment System.

- The TA must allow the student to access words, symbols, pictures, and phrases within the communication mode/system in the same manner and process as during instruction.
- The word banks, books, and phrase boards that the student already uses during daily instruction should be used for administration of the Test. It is recommended that the ELA and mathematics vocabulary lists in A ppendix D : English Language A rts and M athematics V ocabulary Lists, and any appropriate graphics from the answer options, be added to the student's word banks, books, and phrase boards, to be used during testing so that he or she is familiar with the words that will appear on the Test. The TA must delete all Test-related graphics from all devices after testing.
- Refer to Figures 5-8 for examples of how to organize a variety of subject-specific word and phrase boards. If a student already has word boards or word books he or she uses on a daily basis, there is no requirement that the TA reorganizes or rearranges them in a specific format.

W hen administering the writing prompt, the TA must adhere to the AAC Protocol to ensure that the student's response is generated in a manner that allows for accurate measurement of the student's writing ability (see Table 5-5 below). TA s are referred to the TAM A ppendix A: Scribe A ccommodation Protocol for further scribe and annotation protocols.

Table 5-5. 2016-17 MSAA: AAC Protocol for Completing the Writing Prompt

Allowed	Not Allowed
The student completed a process directed by the TA that uses words, symbols, pictures, or phrases that the student typically uses during instruction.	A response to the writing prompt may not be the result of a series of words, phrases, or sentences selected by the TA. - For example, the TA may not ask, "Do you want to say that the girl was tall or short?" or "Do you want to say the girl ran or swam?"
The TA may add any content represented in the grade-specific stimulus materials to the student's AAC device (e.g., list of temporal words, problem/solution cards, words from mentor text or sample essay). The TA should ensure that the words, symbols, pictures, or phrases used from the stimulus materials are familiar or can readily be understood.	The TA may not arrange words, symbols, pictures, or phrases on the student's communication board so that any selection would be correct.

Allowed	Not Allowed
The TA may introduce vocabulary related to the	The TA may not practice the prompt or teach
prompt.	vocabulary in the context of the prompt.
- For example, if the prompt refers to	- For example, if the prompt refers to
supporting a claim related to "means of travel," the TA may define and describe "means of travel" and its uses in order to	supporting a claim related to "means of travel," the TA may not practice having the familiarize the student with the related symbol(s).
student write a persuasive essay using "means of travel" as the context.	

Where appropriate, the TAM refers TAs to the M SAA Online Assessment System U ser Guide for Test Administrators, which outlines using the system to accomplish the tasks for which TAs are responsible. User guides provide step-by-step instruction with M SAA system screenshots to facilitate use of the system.

5.5.17 TAM Appendix C: Sign Language Protocol

Although it is understood that the nature of this assessment requires individualized delivery in the communication method familiar to the student, individuals providing the sign language accommodation for the M SA A must follow these procedures, as shown in Figure 5-6 below, during testing to ensure standardization of delivery.

Figure 5-6. Procedures for Providing the Sign Language Accommodation

1. Signers must be trained on test administration policies as indicated on page 9 of the TAM . Individuals providing the sign language accommodation must sign the security agreement for their state.
2. Signers should use signs that are conceptually accurate, with or without simultaneous voicing, translating only the content that is presented, without changing, emphasizing, or adding information. Signers may not clarify (except for test directions), provide additional information, assist, or influence the student's selection of a response in any way. Signers must do their best to use the same signs if the student requests a portion repeated.
3. Signers must sign (or sign and speak when using Sim-Com [Simultaneous Communication]) in a clear and consistent manner throughout the test administration, using correct pronunciation, and without inflections that may provide clues to, or mislead, a student.
4. Signers should emphasize only the words printed in boldface, italics, or capital letters and inform the student that the words are printed that way. No other emphasis or inflection is permitted.
5. Signers may repeat passages, test items, and answer options as requested, according to the needs of the student. Signers should not rush through the Test and should ask the student if he or she is ready to move to the next item.
6. Signers may not attempt to solve mathematics problems, or determine the correct answer to a test item while signing, as this may result in pauses or changes in inflection that may mislead the student.
7. Signers must use facial expressions consistent with sign language delivery and must not use expressions that may be interpreted by the student as approval or disapproval of the student's answers.
8. TA s must be familiar with the student's IEP and should know in advance which accommodations are required by the student. TA s must be aware of whether a student requires additional tools, devices, or adaptive equipment that has been approved for use during the Test, such as a magnifier, closed circuit television (CCTV), abacus, brailler, slate, stylus, etc., and if use of these tools impacts the translation of the Test, the signer should be made aware of this.
9. Upon review of the Test, if a human signer is unsure how to sign and/or pronounce an unfamiliar word, the signer should collaborate with a content expert who is fluent in sign language (if available) to determine which sign is most appropriate to use. If the signer is unable to obtain this information before the Test, the signer should advise the student of the uncertainty and spell the word.
10. When using a sign that can represent more than one concept or English word, the signer must adequately contextualize the word in order to reduce ambiguity. The signer may also spell the word after signing it if there is any doubt about which word is intended.
11. Signers must spell any words requested by the student during the test administration.
12. When test items refer to a particular part of a passage, the signer must re-sign the lines before signing the question and answer options. For example, the signer should sign, "Question X refers to the following lines... ," then sign the passage part to the student, followed by question X and the answer options.
13. When signing selected-response items, signers must be careful to give equal emphasis to each answer option and to sign all answer options before waiting for the student's response.
14. When answer options will be scribed, the signer should inform the student at the beginning of the Test that if the student designates a response choice by letter only ("B," for example), the signer will ask the student if he or she would like the response to be signed again before the answer is recorded.
15. If the student chooses an answer before the signer has signed all the answer options, the human signer must ask if the student wants the other answer options to be signed.
16. A fter the signer finishes signing a test item and all answer options, the signer must allow the student to pause before responding. If the pause has been lengthy, the signer should ask: "Do you want me to sign the question or any part of it again?" When signing questions again, signers must avoid emphasis on words not bolded, italicized, or capitalized.
17. Signers should refer to A ppendix D: English Language Arts and M athematics V ocabulary Lists for technical vocabulary in order to ensure consistency in providing the accommodation.

Sign System-Specific Procedures

Signers must deliver the accommodation in the language or communication mode used by the student according to the student's IEP.

American Sign Language (ASL)

Signers delivering the accommodation via A SL must use appropriate A SL features (including signs, sentence structure, nonmanual markers, classifiers, etc.) while protecting the construct being measured by the assessment. The signer must be careful not to cue the student.

E nglish-B ased Sign Systems (PSE , Sim-Com, etc.)

Signers delivering the accommodation via an English-based signing system (PSE, Sim-Com, etc.) must use the features of the communication mode used by the student. Signers delivering the Test in Englishbased signing systems should use the rules of those signing systems (conceptually accurate signs, English word order, etc.), with or without simultaneous voicing.

M athematics and English Language Arts Vocabulary Lists

Signers should refer to A ppendix D : English L anguage A rts and M athematics V ocabulary L ists of the TAM for guidance on how to deliver terms found in the ELA test and symbols and terms found in the mathematics test. The guidance provided in the vocabulary lists provides a standardized approach for students who use sign language accommodations. The vocabulary lists provide words that can be used for both ASL and English-based sign systems.

5.6 Test Coordinator and Test Administrator User Guides

The M SAA Online Assessment System U ser Guide for Test Coordinators and M SAA Online Assessment System U ser Guide for Test Administrators were revised in 2017 by the M anuals, U ser Guides, and Training Subcommittee to reflect changes in functionality as well as for clarity, conciseness, reducing redundancies, user friendliness, and consistency with the TAM . The language load in the guides was reduced, and more screenshots of the relevant functionality were used. The guides were reorganized to present information in the order it would be used and grouping relevant information together. For example, the M SAA Online Assessment System U ser G uide for Test Administrators provided an overview of the assessment process, user roles and responsibilities, support information, system functionality information for the M SAA Online A ssessment System, troubleshooting guidance, and a walkthrough of the tasks to be completed before, during, and after test administration. For the purposes of this report, some content in the following sections was copied directly from the user guides for consistency.

5.6.1 Document Overview

This section appears in both the M SAA Online Assessment System U ser G uide for Test Coordinators and M SAA Online Assessment System U ser G uide for Test Administrators. It displays the roles and responsibilities table as discussed in section 5.5.7 (Who Can A dminister the M SAA ?) of this report and as shown in Table 5-4, as well as a chart showing the TA and TC steps in the testing process and the corresponding page numbers for more information about each step. The document overview also lists the contact information for the M SAA Service Center and a link to the M SAA Online A ssessment System. This information was placed near the beginning of the guides for easy reference by users.

5.6.2 Troubleshooting

This section appears in both the M SAA Online Assessment System U ser G uide for Test C oordinators and MSAA Online Assessment System U ser Guide for Test Administrators and contains the same chart as described in section 5.5.2 (M SAA Technical Support) of this report.

5.6.3 How to Access the MSAA Online Assessment System

This section appears only in the M SAA Online Assessment System U ser G uide for Test Administrators. It details the instructions for gaining access to the M SAA Online A ssessment System, logging in for the first time, and how to unlock an account if it becomes locked from multiple failed login attempts. The section then shows a large screenshot of the login landing page, or Dashboard. The image highlights each link on the landing page, its name, and functionality. This screenshot was intended to function as a system "map" so the user can become familiar with the navigation, and subsequent sections do not need to include a screenshot of how to access the page.

5.6.4 Before Testing

This section describes the steps to be completed before administering the test to students, including training modules and final quiz and the steps to complete the student profile. The detailed Student Response Check information updated in the TA M is included in this section.

5.6.5 Administer and Navigate the Test

This section appears only in the M SAA Online Assessment System U ser Guide for Test Administrators. It describes how to locate, start, resume, pause, and submit a test, access test materials, navigate the test and use the features of the navigation toolbar, and use the test accessibility features. This section also includes updated instructions for administering and submitting writing items to reflect improvements in the evidence upload functionality.

5.6.6 After Testing

This section appears only in the M SAA Online Assessment System U ser Guide for Test Administrators. This section details the tasks to be completed after test administration, including the A ccommodations: A fter Test section of the student profile, End-of-T est Survey, and returning test materials (if applicable). These instructions were grouped together so that TA s could easily refer to all activities to be completed after testing.

5.6.7 Appendix A

A ppendix A appears in both the MSAA Online Assessment System U ser Guide for Test C oordinators and MSAA Online Assessment System U ser Guide for Test Administrators. This section describes the accessibility features available for both online and paper-based assessments, as well as the assistive technology devices supported by the M SAA Online A ssessment System.

5.6.8 Appendix B

A ppendix B appears in both the M SAA Online Assessment System U ser G uide for Test Coordinators and MSAA Online Assessment System U ser Guide for Test Administrators. This section details the technology requirements for the M SAA Online A ssessment System, including supported devices, operating systems, and browsers.

5.6.9 How to Navigate the MSAA Online Assessment System

This section appears only in the M SAA Online Assessment System U ser Guide for Test C oordinators. This section is largely the same as H ow to A ccess the M SAA Online A ssessment System section in the M SAA O nline Assessment System U ser G uide for Test Administrators but includes functionality specific to the TC role, such as M y Organizations, Order Test M aterials, and M y Reports.

5.6.10 Order Test Materials

This section appears only in the M SAA Online Assessment System U ser Guide for Test C oordinators. The Online Ordering System (OOS) was new functionality for the 2016-17 administration, which allowed TCs to order TA M s and test materials through the M SAA Online A ssessment System. This section details the instructions for using the OOS.

5.6.11 Manage Users

This section appears only in the M SAA Online Assessment System U ser G uide for Test C oordinators. M anage U sers details the instructions for bulk uploading users, adding a single user, and editing users in the M SAA Online A ssessment System. These actions are available only to the TC role.

5.6.12 Manage Organizations

This section appears only in the M SAA Online Assessment System U ser Guide for Test C oordinators. M anage Organizations focuses on the instructions for creating and using classrooms in the M SAA Online A ssessment System, as this is the functionality that most TCs would use, given that districts and schools are preloaded in the M SAA Online A ssessment System. However, instructions for adding a school are included in this section.

5.6.13 Test Administration Training

This section appears only in the M SAA Online Assessment System U ser Guide for Test C oordinators. This section contains the same instructions as the M SAA Online Assessment System U ser Guide for Test Administrators for accessing and completing Test Administration Training, but it al so includes instructions for tracking the training status of TA s in their district or school.

5.6.14 Managing Students and Completing Testing Activities

This section appears only in the M SAA Online Assessment System U ser G uide for Test Coordinators and prepares TCs to track test administration progress and manage students in the M SAA Online A ssessment System. It includes instructions for transferring students to a new school or classroom, changing a student's grade assignment, and closing a test for the early stopping rule.

5.6.15 My Reports

This section appears only in the M SAA Online Assessment System U ser Guide for Test C oordinators. M y Reports is available only to TCs and is used to access reporting files after administration. This section describes the instructions for accessing and downloading reports.

5.6.16 Operational Test Administration

The test administration window was M arch 27 to M ay 12 , 2017. The tests were delivered for the online administration using the M SAA system, following the M SAA two-stage adaptive test design requiring test administration in three separate sessions for ELA and two sessions for mathematics.

M SAA was not a timed test. Testing time varied for each student with testing paused and resumed, based on a student's needs. If a student became sick or exhibited frustration, lack of engagement, or refusal to participate during the administration of M SAA , TA s were directed to pause the testing and take a break, which could be for a few minutes to a few days, depending on the student's needs. M SAA protocols allowed the TA to pause and resume the administration of the test as often as necessary during the testing window, based on a student's needs.

5.6.17 Session Structure and Two-Stage Adaptive Design

TA s could begin with either the mathematics test or the ELA test. Once a content-area test was started, TA s were required to complete that test before beginning the test in the other content area. Each content-area test consisted of a set of testing sessions. Students were administered the test sessions in consecutive order for a given content area. ELA consisted of three test sessions (see Table 5-6) and mathematics consisted of two test sessions (see Table 5-7) at each grade level.

Table 5-6. 2016-17 MSAA: ELA Test Sessions

Session 1: ELA	Session 2: ELA	Session 3: ELA - Writing Prompt
Literary and informational reading passages and associated selected- response reading items	Literary and informational reading passages and associated selected- response reading items	One constructed-response writing item (field-tested)
	Selected-response writing items	

Table 5-7. 2016-17 MSAA: Mathematics Test Sessions

Session 1: Mathematics	Session 2: Mathematics
Selected-response mathematics items	Selected-response mathematics items
Constructed-response mathematics completion items in selected grades	Constructed-response mathematics completion items in selected grades

For the two-stage adaptive design, student performance on operational items in Session 1 determined which version of Session 2 the student was assessed. The same process applies for both ELA and mathematics. In Session 2, V ersion A is the least complex, V ersion B is slightly more complex than V ersion A, and V ersion C is the most complex. For ELA, all students then took either a Tier 2 or Tier 3 constructedresponse field-test writing prompt in Session 3 based on field-test form assignment only. This session was not stage adapted and therefore not determined by student performance. The visual below provides a demonstration of the flow between sessions (note: only ELA had a Session 3):

Figure 5-7. MSAA Stage Adaptive Test Design

5.6.18 MSAA Service Center

To provide additional support to schools before, during, and after testing, the test administration vendor operated and provided technical support through the M SAA Service Center. The M SAA Service Center was available for those involved in test administration through e-mail or by calling a toll-free number, to ask specific questions or report problems they may be experiencing. M SAA Service Center operators were responsible for receiving, responding to, and tracking reported issues, then routing issues to the appropriate person(s) for resolution. The M SAA Service Center was available for extended hours throughout registration and the testing window (from 7:00 a.m. to 8:00 p.m. EST, M onday through Friday) to accommodate the multiple time zones in which the test was administered.

The TAM directed TAs and TCs to contact the MSAA Service Center with questions pertaining to the M SAA system and test administration procedures. The M SAA Service Center's toll-free support number and e-mail address were promoted to the field through the M SAA system and related communications.

Functionally, support was provided in a tiered manner, where Tier 1 support designated direct support to the caller by M SAA Service Center representatives, Tier 2 support designated support by the program management team for items such as policy questions, and Tier 3 support designated technical requests that were escal ated to the technology vendor for attention. Wherever possible, callers were directed to the appropriate section of the TAM , M SAA Online Assessment System U ser Guide for Test Administrators, or M SAA Online Assessment System U ser Guide for Test C oordinators, available to users within the M SAA system.

All activity was tracked in the new M SAA Service Center ticketing system, ServiceN ow, and included in weekly status reports that were provided to M SA A State L eads. These reports summarized ticket activity, call analysis data (e.g., call duration, hold time), and per-grade/-content and per-state test status summaries throughout the administration window.

5.6.19 Additional Supports

In addition to the M SAA Service Center, the test administration vendor program management team periodically provided direct phone and e-mail support to the M SAA State Leads. In cases where logistical or procedural support was needed, program management worked with M SAA State Leads to resolve questions or issues. In cases with policy or consortium-wide implications, however, program management referred the State Lead to the Partner States and related policy documentation.

A banner messaging system in the M SAA system was implemented to notify users of important information during the administration window. U pon logging in to the system, a banner message appeared at the top of the screen to notify users of system information and upcoming system activities, such as known issues and scheduled system maintenance, as well as courtesy messages regarding upcoming test administration deadlines.

5.6.20 Monitoring and Quality Control

To ensure that proper testing procedures and appropriate test practices were maintained throughout administration, numerous measures were taken both to communicate participants' responsibilities and to monitor the appropriateness, accuracy, and completion of key procedures and tasks. The TAM outlined the procedure for reporting any violation or suspected violation of test security or confidentiality by notifying the school or district TC. TCs were then instructed to follow state procedures regarding reporting the issue or suspected issue; however, district TCs were informed that they must report to the State M SAA Coordinator any incidents involving alleged or suspected violations that would be considered a serious irregularity. The TAM further explained that the consequences for inappropriate test practices would be determined by their state's professional codes of ethics and state law.

The online M SAA system contains built-in measures to ensure proper testing procedures, as seen in the session-based test design. A s described in the Session Structure section of this chapter, tests were
administered in item groupings referred to as test sessions. A change to the end-of-session functionality was made for the 2016-17 administration. Instead of a discrete end-of-session page at the end of each session, when the user clicked the Next button while on the last question of a session, a prompt window appeared, notifying the user that he or she had reached the end of the session, displaying the number of unanswered items, and options for the user to proceed to the next session, return to the current session, or Save \& Exit. If the user chose to Save \& Exit, the test resumed on the last item answered. This new prompt eliminated the risk of users accidentally submitting a session.

Throughout the administration window the test administration vendor monitored and provided weekly updates to State L eads on the test statuses across M SAA Partner States and trends identified in support calls. This provided a mechanism for concerns to be identified early and the appropriate measures to be taken, such as creation of assessment-wide or state-level materials and communications. This high level of communication and responsiveness throughout the assessment process contributed to a proper and valid administration of MSAA.

5.6.21 Operational Test Survey Results

An End-of-Test Survey (EOTS) was developed to gain knowledge from the experience of each TA administering M SAA. TA s were instructed to complete one EOTS after submitting or closing one of his or her students' content-area tests. Specific directions for completing the EOTS were provided in the M SAA Online Assessment System U ser Guide for Test Administrators. The survey questions focused on several themes:

- Challenges experienced while using and providing accommodations
- Challenges experienced while using the embedded supports and materials
- Instructional time and resources spent teaching the State Content Standards
- Teacher viewpoints and priorities when developing instruction for students
- Technical challenges with the online system
- Students' ability to communicate and access the test

In addition to identifying issues that were unknown to the M SAA Partners, the results of the EOTS al so highlighted several issues that the M SAA Partners has addressed prior to reviewing this data. The EOTS data confirmed the need for M SAA previously initiated plans to address several known issues. These issues included:

- Providing clarification about what is and is not a Consistent Observable Response for the Early Stopping Rule, allowing TCs to close a student's test
- Providing further details in the directions and stimulus materials for the writing prompts
- Resolving issues surrounding locked tests

The survey data also identified the effectiveness of several improvements to correct issues identified in the 2015-16 administration. These included:

- Improving the online training modules to address allowable supports to students in a clearer, more explicit manner
- Restricting the application of the Early Stopping Rule to test coordinators, rather than test administrators, and defining what a Consistent Observable Response is and is not
- Simplifying directions for converting writing responses from a PDF into a JPG or PNG file format
- Improving the online messages for submission of tests

One issue that the survey continues to reveal that will take thoughtful, long-range planning to resolve is how students and teachers scroll to see the entire test item in the online platform. Currently, the item display is such that the whole item cannot be seen on the screen. This has proven difficult to fix as it requires code changes and changes to the A PIP for each item. A nother issue raised by the teachers is the lack of familiarity and relatability with the contexts and scenarios used in the writing prompts and other items. The M SAA Partners' focus on developing test items and writing prompts that contain contexts and scenarios which are more relatable to students in this population will be a sustained goal requiring several testing cycles.

Several questions on the survey addressed teachers' view points and philosophies regarding teaching students with significant cognitive disabilities. The results continue to indicate the need for more instructional materials to illustrate how students in this population can learn rigorous academic content. Additionally, the perception is that the test is still too difficult for most of the targeted population. The 2016-17 administration introduced a stage adaptive design. The M SAA Partners anticipated that this design would help to alleviate the concerns that many teachers have, by directing students to an appropriate stage level of difficulty within the test at each content area. The M SA A Partner States are working to ensure that future administrations' multistage tests have higher differentiation while still maintaining the required match to the blueprint.

The EOTS data also show that teachers are seeking additional support for classroom instruction in several academic areas. These include fractions and data and statistics in mathematics, and writing an argument and reading informational texts in ELA. Given that education for students in this population has traditionally centered on life and functional skills, the heavier focus on academics is something that teachers may not feel adequately prepared for. The EOTS data show several academic areas in which teachers had difficulty instructing their students. In order to effectively help teachers, the M SAA Partners will need more information on teaching difficulties in the areas identified above.

CHAPTER 6 SCORING

6.1 Item Scoring Process

M SAA was completed through an online administration. Students responded to a variety of item types, including selected-response items and constructed-response items. The selected-response items were scored according to the answer keys provided in each test package. The mathematics constructed-response items were scored as a correct or incorrect student response and this was entered by the test administrator (TA).

6.1.1 Scoring Processes and Rules for Selected-Response and ConstructedResponse Items in Mathematics and Selected-Response Items in Reading and Writing

6.1.1.1 Overview of Scoring Process by Item Type

Selected-Response: Reading, Mathematics, and Writing

Selected-response items (multiple-choice) were presented to students in a standardized and consistent format. All directions and materials needed for administering selected-response items were provided in the secure Directions for Test Administration (DTA) that accompanied each test form. The TAs received training in the administration of selected-response reading, writing, and mathematics items in the online training modules. The DTA provided the full items, including the teacher scripts, to be read aloud to the student and any direction to the teacher related to the item and item setup, such as what to point to in the item as the script was read to the student. Every item was presented in the following order:

- Item stimulus (which may include a passage, passage part, picture, graphic, or other illustration)
- Item question
- A nswer options presented in stacked, or vertical, formation

Students selected a response from the options in a variety of ways, as appropriate to their preferred modes of communication (e.g., using the computer mouse, verbalizing, gesturing, using eye gaze or communication devices, assistive technology). M any students entered responses directly into the M SAA system. If the student had the scribe accommodation, the scribe entered the student-selected response on behalf of the student.

Constructed-Response: Mathematics Completion

The constructed-response items, in selected grades for mathematics, required students to develop an answer instead of selecting an answer from response options. Constructed-response items were presented as
novel tasks using materials and content presented in a test format that allows the TA to print out materials and manipulatives for the student to interact with. Each item was presented to the student in a standardized, scripted sequence of steps culminating in the TA scoring the student performance using the M athematics Scoring Rubrics provided for the item. The M athematics Scoring Rubrics provided scoring standards that were used to evaluate student responses. TAs received training in the administration and scoring of constructed-response mathematics items in the online training modules. Directions and materials needed for administering mathematics constructed-response items were included in the secure DTA that accompanied each mathematics test form. The TA entered a student's constructed-response score into the M SAA system as either correct or incorrect.

Overview of Scoring Process within the Assessment System

The M SA A system provided automated machine scoring for all item types, aside from the field-tested constructed-response writing items, which required human scoring. The system also allowed for teacher entry of student responses to be used for paper-based test delivery. The M SAA system automatically scored question types that were machine-scorable as entered by the student or TA. At the completion of the operational test, all test data were extracted from the system and were then compiled to generate full result sets for each student's tests.

The selected-response items were scored according to the answer keys provided in each test package. All item responses were exported from the system and provided to the M easured Progress D ata and Reporting Services (DRS) Department. DRS then applied the scoring rules. Items were scored as correct or incorrect, with each of them contributing a score of 1 or 0 to the content-area raw score.

Administrator/Scorer Training

All TAs were required to participate in administration training modules and pass a final quiz in order to be certified to administer M SAA, as described in detail in Chapter 5. During the test administration, TAs used the content-area DTA s to administer each item. The DTA s included the teacher scripting and directions related to any item setup, providing directions for the teacher to follow during administration. For the mathematics constructed-response items, the DTA included any templates required by the items, the directions related to how to present the items to the student, and the rubrics used to score the items.

Further direction was provided to TA s on the entering of item responses in the M SAA system through the M SAA Online Assessment System U ser Guide for Test Administrators. The guide outlined the use of the system, including how to enter student responses and submit each content-area test.

During the administration window TAs were able to call or e-mail the M SAA Service Center with any questions related to the administration of test items and submission of the student responses within the M SAA system.

CHAPTER 7 REPORTING

7.1 INTRODUCTION

To ensure that reported results for M SAA were accurate relative to collected data, a decision rules document delineating processing rules was prepared and approved by all participating Partner States prior to processing of the results. The decision rules and included participation status structure provided the framework for the reporting requirements, which were defined for each unique report and similarly approved by all participating Partner States prior to reporting.

7.2 Development and Approval

The decision rules document was developed by M easured Progress in collaboration with the M SA A Reports Subcommittee. The decision rules document contains the hierarchy by which the participation statuses were assigned for each individual test incorporating data elements collected by the test platform and directly from the Partner States. The reporting requirements and corresponding report design templates were developed by M easured Progress with the guidance of the M SAA Reports Subcommittee. B oth documents underwent iterative review processes that included draft reviews by the appropriate committee, incorporation of edits, draft reviews by all participating Partner States, and committee review and integration of feedback, until final revisions were approved by all participating Partner States. The approved decision rules are provided in A ppendix E.

To develop the report design templates, M easured Progress worked with the M SAA Reports Subcommittee to identify modifications to the templates used for last year that would ensure the data elements, layout, and report text were meaningful for reporting the spring 2017 M SAA results. Once finalized, the results of this collaborative process were presented to participating M SAA State Leads for final approval.

M easured Progress worked with the M SAA Reports Subcommittee to update the M SAA 2017 Guide for Score Report Interpretation and collaborated to provide information that would be most helpful to district and school staff, as they reviewed reports and discussed reports with parents or guardians. The guide included an overview of MSAA, student participation criteria, score reporting overview, and samples of the various types of reports available to schools and districts. Guidelines were provided to inform the interpretation and utilization of M SAA scores. The guide also included explanations for all special reporting codes and messages, as well as performance-level scaled score ranges. States were permitted to remove codes not used in their state. M easured Progress revised the base document through an iterative process with the M SAA State Leads. A ppendices included in the guide contain the Performance-Level Descriptors for ELA and M athematics, a sample individual student report, and the field-test writing prompt scoring rubrics. The final,
approved document was delivered to the M SAA Partner States for state-specific revisions and distribution (see A ppendix F).

7.3 PRIMARY Reports

M easured Progress, in collaboration with the M SAA Reporting Committee, created the following primary reports for MSAA :

- Student reports
- School roster reports
- School, district, and state summary reports

These reports, along with student results data files, were posted online via the M SAA Online A ssessment System's secure data and reporting portal, with access controlled by user-permissioned accounts, as illustrated in Table 7-1:

Table 7-1. 2016-17 MSAA: Matrix by Users by Report

	State TC	District TC	School TC
Student Reports	Yes	Yes	Yes
School Roster Reports	Yes	Yes	Yes
School Summary Reports	Yes	Yes	Yes
District Summary Reports	Yes	Yes	No
State Summary Reports	Yes	No	No

As determined by M SAA State Leads, only test coordinators (TCs) were granted access to the online reports. For the purposes of the assessment system, M SA A State Leads were regarded as state TCs. As such, they were able to add new district and school TCs to the online system and to block users no longer in the TC role from accessing the system. Reports were generated for each school, district, or state that had results, as defined by the M SAA decision rules and reporting requirements.

The primary results reported were the student's scaled score and performance-level classification for mathematics and ELA. The performance-level classifications, with cuts determined through the standard setting process, were reported under the generic titles of: Level 1, Level 2, Level 3, and Level 4, with Level 1 as the lowest level and Level 4 as the highest attainable performance level.

The average scaled score and percent of students in each performance level were summarized by school, district, and state on both the roster and summary reports. This allowed for the comparison of individual student performance in relation to the state, as well as for comparison of school and district results against the overall state results.

7.3.1 Student Report

The student report was a two-sided single-page document generated for each student eligible to receive a performance level in at least one content area, as defined by the student report requirements. The report contained results for both content areas and was developed for parents and guardians of students who participated in M SA A. Reports were organized by school and posted via the secure-access portal for permissioned users to download, print, and disseminate to parents and guardians as appropriate. Each report contained the student name, test grade, and school on the front and back of the report. The back page also included the state student ID for additional confirmation of the student's identification. A dditionally, some Partner States chose to print and distribute paper versions of these reports to districts/schools for distribution to students' parents/guardians. Sample student reports are included the M SAA 2017 Guide for Score Report Interpretation, located in A ppendix F.

The front page of the report contained a brief overview of MSAA, including examples of some of the built-in supports available during testing, and highlighted the compatibility of the assessment with various modes of communication. The front also contained a short overview of the results included on the back page, as well as a link to where more information could be accessed online. Parents and guardians were encouraged to communicate with their child's teacher regarding their child's specific mode of communication and performance.

The back page of the report contained the scaled score, performance level, and associated performance-level descriptor for the level obtained by the student for each content area. A sentence below the graphical display explained the standard error of measurement (SEM) in an easy-to-understand manner by providing the expected range of scores the student would likely earn if tested again.

For students who are unable to show an observable mode of communication, their tests were closed due to the Early Stopping Rule, and the lowest scaled score was assigned and displayed along with the Level 1 performance level. This was annotated, and in place of the Level 1 performance-level descriptor, the following text was displayed: Your child did not show a consistent observable mode of communication during the test and the test was closed by the teacher. Since your child did not complete the test the results may not be an accurate representation of your child's skills. If you have additional questions, please contact your child's teacher.

In the event that a student received a student report but did not receive results for one of the two content areas, results for the missing content area were replaced with text encouraging the parent or guardian to contact the child's teacher or school for more information.

7.3.2 Student Roster

The student roster was organized at the school level and provided a by-grade list of all students enrolled in M SAA, with a snapshot of their participation status and results for both content areas. The number
of tested students, the average scaled score, and the percent of students by performance level were summarized for the school, district, and state at the top of the roster. R oster reporting requirements identified which of the participation status codes were included on the roster and which of the participation status codes were included in each calculation.

The summary information at the top of the student roster supported interpretation of results by users, typically those at the school and district levels. Given that many schools have a relatively small number of students in this population, M SAA Partner States did not suppress information when the number of students participating was small. This practice placed a burden on users to understand the data in the context of small numbers and to use all information provided to understand the results, as explained in the M SAA 2017 Guide for Score Report Interpretation (see A ppendix F).

Student results were listed below the summary section and were identified by name and state student identification number. For each content area, the following student-level elements were reported:

- Participation Status
- Scaled Score
- Performance Level
- Comparison to the State A verage

It is intended that these data points are to be used in conjunction with the M SAA 2017 Guide for Score Report Interpretation (see A ppendix F).

7.3.3 Summary Report

Summary reports were organized at the school, district, and state levels, for each entity with at least one student included in summary report calculations. Inclusion in these calculations was defined by the decision rules and summary report requirements. The following information was summarized by grade and content area and displayed for the school, district, and state, based on the level of the report:

- Number of students enrolled
- Number of valid student tests
- Number of enrolled students that did not test
- A verage scaled score
- Number of students who had a participation status of Tested, E arly Stopping Rule, or A dministration Irregularity

This summary provided a comparative snapshot of results and participation information at a high level and included both participation and performance summary information, allowing users to evaluate both aspects of their assessment results as guided by the M SAA 2017 Guide for Score Report Interpretation (see A ppendix F).

7.3.4 Quality Assurance

Proprietary qual ity-assurance measures at M easured Progress were embedded throughout the entire process of analysis and reporting. The data processors and data analysts who worked on the project implemented quality-control checks of their respective computer programs. M oreover, when data were handed off to different functions within the Data and Reporting Services (DRS) Department, the sending function verified that the data were accurate prior to handoff. A dditionally, when a function received a data set, the first step was to verify the data for accuracy.

A second level of quality-assurance measure was parallel processing. One data analyst was responsible for writing all programs required to populate the student and aggregate reporting tables for the administration. Each reporting table was assigned to another data analyst on staff who used the decision rules to independently program the reporting table. The production and quality-assurance tables were compared, and only after there was 100% agreement were the tables released for report generation.

The third aspect of quality control at M easured Progress involved the procedures implemented by the quality-assurance group to check the accuracy of reported data. Using a sample of schools and districts, the quality-assurance group verified that reported information was correct.

The second set of samples included districts or schools that had unique reporting situations as indicated by decision rules. This set was necessary to check that each rule was applied correctly. The third set included districts and schools identified by the client for its review and approval before reports were produced for distribution.

The quality-assurance group used a checklist to implement its procedures. Once the checklist was completed, it underwent an internal parallel verification and then sample reports were circulated for psychometric checks and program management review. Samples of the final reports were then sent for client review and signoff. Simultaneously, A rizona ran successful independent confirmations of the results contained in their state data file. Once signoff was received from all Partner States, the final reports were uploaded into the M SAA Online A ssessment System reporting portal.

CHAPTER 8 CLASSICAL ITEM ANALYSIS

As noted in Brown (1983), "A test is only as good as the items it contains." A complete evaluation of a test's quality must include an evaluation of each item. Both Standards for Educational and Psychological Testing (AERA et al., 2014) and Code of F air Testing Practices in Education (J oint Committee on Testing Practices, 2004) include standards for identifying quality items. Items should assess only knowledge or skills that are identified as part of the domain being tested and should avoid assessing irrelevant factors. Items should also be unambiguous and free of grammatical errors, potentially insensitive content or language, and other confounding characteristics. In addition, items must not unfairly disadvantage students, particularly racial, ethnic, or gender groups.

B oth qualitative and quantitative analyses are conducted to ensure that M SAA ELA and mathematics items meet these standards. Qualitative analyses are described in earlier chapters of this report; this chapter focuses on quantitative evaluations. Statistical evaluations are presented in three parts: (1) difficulty indices, (2) item-test correlations, and (3) differential item functioning (DIF) statistics. The item analyses presented here are based on the administration of M SAA in spring 2017.

8.1 Classical Difficulty and Discrimination Indices

All items are evaluated in terms of item difficulty according to standard classical test theory practices. Classical statistics provided in this chapter should be cautiously interpreted because some items are only administered to a subgroup of examinees, and each subgroup can be quite different in their underlying proficiencies. One thing to note is that the 2016-17 M SAA was a stage adaptive test, consisting of three possible paths through the test. Hereinafter, each path will be referred to as:

- Path A : Stage 1 and Stage 2 V ersion A
- Path B: Stage 1 and Stage 2 V ersion B
- Path C: Stage 1 and Stage 2 V ersion C

As mentioned earlier, each version in Stage 2 was intended to be slightly more complex than the previous version. Examinees were routed to one of the three versions in Stage 2 based on their performance on Stage 1, which was administered to all examinees. (Note: A s explained in section 5.6.17, stage correlates with session number.) The lowest-achieving examinees were routed to Stage 2 V ersion A , and so on. Thus, the examinees who were administered a particular path exhibited a much smaller range of achievement as compared to the entire population of examinees who took the assessment in past years. This specific range varied in the obvious way across the three paths. Because of this restriction of range and because of the differences across the paths, the classical statistics are not comparable between items on different paths and
are not comparable to statistics based on all the examinees (e.g., statistics for the Stage 1 items and statistics from past years).

Difficulty is defined as the average proportion of points achieved on an item and is measured by obtaining the average score on an item and dividing it by the maximum possible score for the item. Selectedresponse and 1-point open-response items are scored dichotomously (correct versus incorrect); for these items, the difficulty index is simply the proportion of students who correctly answered the item. An index of 0.0 indicates that all students received no credit for the item; an index of 1.0 indicates that all students received full credit for the item. Discrimination is defined as the correlation between student performance on a single item and total test score on the particular path. Within classical test theory, the item-test correlation is referred to as the item's discrimination because it indicates the extent to which successful performance on an item discriminates between high and low scores on the particular path on which the item occurred. Because of the restriction of range complications mentioned above, the increase in the number of items with poor classical discrimination statistics (as compared to past years) was expected.

A summary of the item difficulty and item discrimination statistics for each content area and grade is presented in Table 8-1. The mean difficulty values shown in the table are within typically observed ranges and are similar to those for the fixed-form 2015-16 M SA A reported in last year's technical report. The mean discrimination values are slightly, but consistently, lower than those reported last year, though still similar to typically observed ranges. A total of 24 out of 685 items displayed negative discrimination statistics. A closer examination revealed that 23 out of 24 items with negative discrimination statistics appeared in either Stage 2 V ersion A only or Stage 2 V ersions A and B only. A s mentioned above, the lower mean discrimination statistics and the increase in negative values is not surprising given the nature of the adaptive test.

Table 8-1. 2016-17 MSAA: Summary of Item Difficulty and Discrimination Statistics by Content Area and Grade

Content Area	Grade	Number of Items	p-value				Discrimination			
			Min	Max	Mean	SD	Min	Max	Mean	SD
ELA	3	41	0.34	0.86	0.61	0.14	-0.11	0.51	0.33	0.12
	4	43	0.37	0.85	0.61	0.13	0.09	0.47	0.29	0.10
	5	41	0.33	0.88	0.58	0.13	-0.07	0.48	0.29	0.13
	6	45	0.34	0.86	0.59	0.14	0.07	0.48	0.29	0.11
	7	45	0.33	0.84	0.59	0.11	0.06	0.50	0.28	0.13
	8	43	0.38	0.86	0.60	0.12	0.04	0.51	0.29	0.11
	11	43	0.28	0.81	0.58	0.12	-0.02	0.49	0.28	0.14
Mathematics	3	55	0.23	0.93	0.50	0.15	-0.02	0.47	0.25	0.12
	4	55	0.25	0.76	0.45	0.13	-0.20	0.41	0.24	0.14
	5	55	0.08	0.73	0.44	0.15	-0.12	0.45	0.21	0.13
	6	55	0.29	0.92	0.53	0.14	-0.02	0.46	0.25	0.13
	7	54	0.24	0.90	0.51	0.14	-0.04	0.44	0.22	0.13
	8	55	0.28	0.79	0.49	0.13	-0.13	0.42	0.25	0.11
	11	55	0.28	0.71	0.48	0.11	-0.15	0.48	0.23	0.15

Note: p-values are dependent on the number of options within the items. All p-values are cal culated on items having either two (chance correct is .50) or three (chance correct is .33) options.

The individual item statistics can be found in A ppendix G. Note that the classical statistics should be interpreted with caution because the items are primarily two- or three-option selected-response items, and some items were only administered to a subset of examinees. Because the items were developed to correspond to different tiers, the item statistics have been summarized by tier (Tables 8-2 and 8-3). Also, the item statistics were summarized by path, representing the different paths in the stage adaptive design (Tables 8-4 and 8-5). The classical statistics are not comparable between items on different tiers and between items on different paths because of the restriction of range and the differences across paths mentioned above.

Table 8-2. 2016-17 MSAA: Item-Level Classical Test Theory StatisticsSummary by Grade and Tier-ELA

Grade	Tier	Number of Items	p-value				Discrimination			
			Min	Max	Mean	SD	Min	Max	Mean	SD
3	1	9	0.42	0.86	0.67	0.14	-0.11	0.41	0.29	0.16
	2	16	0.34	0.75	0.56	0.13	0.12	0.49	0.32	0.13
	3	11	0.35	0.74	0.55	0.10	0.22	0.51	0.38	0.09
	4	5	0.64	0.83	0.76	0.08	0.27	0.37	0.33	0.04
4	1	11	0.47	0.84	0.69	0.13	0.09	0.45	0.28	0.12
	2	11	0.40	0.67	0.54	0.08	0.16	0.47	0.34	0.09
	3	15	0.37	0.75	0.58	0.10	0.09	0.44	0.28	0.10
	4	6	0.46	0.85	0.7	0.15	0.20	0.33	0.27	0.05
5	1	10	0.49	0.83	0.69	0.11	-0.07	0.41	0.28	0.15
	2	10	0.33	0.67	0.52	0.11	0.05	0.48	0.28	0.14
	3	16	0.33	0.69	0.52	0.09	0.11	0.48	0.33	0.11
	4	5	0.52	0.88	0.67	0.15	0.09	0.34	0.23	0.09
6	1	13	0.51	0.86	0.7	0.14	0.17	0.45	0.31	0.10
	2	10	0.38	0.72	0.56	0.12	0.19	0.48	0.36	0.09
	3	15	0.34	0.62	0.52	0.08	0.07	0.47	0.25	0.12
	4	7	0.35	0.83	0.56	0.15	0.13	0.35	0.23	0.08
7	1	11	0.55	0.84	0.68	0.09	0.06	0.40	0.27	0.11
	2	11	0.53	0.72	0.62	0.07	0.25	0.50	0.39	0.08
	3	16	0.33	0.63	0.5	0.09	0.06	0.49	0.25	0.15
	4	7	0.48	0.67	0.6	0.06	0.15	0.32	0.22	0.06
8	1	10	0.46	0.86	0.69	0.14	0.04	0.41	0.28	0.12
	2	12	0.48	0.76	0.63	0.09	0.28	0.51	0.40	0.07
	3	15	0.38	0.65	0.52	0.09	0.11	0.41	0.25	0.09
	4	6	0.50	0.74	0.6	0.10	0.14	0.32	0.22	0.07
11	1	11	0.49	0.81	0.65	0.10	-0.01	0.35	0.22	0.12
	2	15	0.46	0.69	0.59	0.08	0.15	0.49	0.35	0.12
	3	11	0.28	0.69	0.48	0.14	-0.02	0.48	0.23	0.18
	4	6	0.37	0.70	0.6	0.13	0.22	0.31	0.28	0.04

Table 8-3. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—
Summary by Grade and Tier-Mathematics

Grade	Tier	Number of Items	p-value				Discrimination			
			Min	Max	Mean	SD	Min	Max	Mean	SD
3	1	10	0.52	0.74	0.62	0.07	0.06	0.32	0.19	0.10
	2	20	0.27	0.93	0.49	0.16	0.03	0.47	0.25	0.11
	3	20	0.23	0.70	0.43	0.13	-0.02	0.44	0.26	0.14
	4	5	0.40	0.82	0.58	0.18	0.12	0.38	0.28	0.10
4	1	10	0.48	0.76	0.61	0.10	-0.20	0.29	0.08	0.18
	2	20	0.25	0.59	0.41	0.08	-0.13	0.40	0.25	0.13
	3	20	0.27	0.64	0.41	0.11	0.20	0.41	0.30	0.06
	4	5	0.33	0.62	0.49	0.12	0.13	0.38	0.24	0.11
5	1	10	0.46	0.73	0.59	0.11	-0.10	0.35	0.17	0.13
	2	20	0.22	0.70	0.44	0.13	-0.12	0.45	0.20	0.14
	3	20	0.08	0.61	0.35	0.14	0.05	0.45	0.23	0.12
	4	5	0.38	0.67	0.51	0.11	0.05	0.34	0.20	0.12
6	1	10	0.49	0.79	0.65	0.11	0.04	0.34	0.20	0.11
	2	21	0.32	0.92	0.51	0.15	-0.02	0.46	0.25	0.15
	3	19	0.30	0.68	0.49	0.11	0.05	0.44	0.28	0.13
	4	5	0.29	0.77	0.53	0.19	0.09	0.37	0.28	0.12
7	1	10	0.48	0.81	0.64	0.10	-0.02	0.28	0.15	0.10
	2	19	0.30	0.90	0.51	0.16	-0.04	0.40	0.22	0.12
	3	20	0.24	0.56	0.43	0.09	-0.02	0.44	0.24	0.14
	4	5	0.34	0.71	0.56	0.15	0.31	0.41	0.35	0.04
8	1	10	0.43	0.75	0.61	0.11	-0.13	0.38	0.22	0.17
	2	20	0.32	0.79	0.47	0.14	-0.03	0.42	0.24	0.10
	3	20	0.28	0.70	0.46	0.12	0.06	0.40	0.28	0.11
	4	5	0.30	0.64	0.45	0.13	0.18	0.36	0.27	0.08
11	1	10	0.47	0.71	0.61	0.09	0.06	0.34	0.20	0.11
	2	20	0.33	0.70	0.46	0.12	-0.06	0.48	0.24	0.17
	3	20	0.28	0.58	0.43	0.08	-0.15	0.46	0.22	0.16
	4	5	0.37	0.66	0.48	0.12	0.12	0.36	0.27	0.12

Table 8-4. 2016-17 MSAA: Item-Level Classical Test Theory StatisticsSummary by Grade and Path- ELA

Grade	Path	Number of Items	p-value				Discrimination			
			Min	Max	Mean	SD	Min	Max	Mean	SD
3	A	32	0.34	0.86	0.59	0.13	-0.11	0.51	0.35	0.12
	B	32	0.34	0.86	0.59	0.13	0.12	0.51	0.34	0.11
	C	32	0.34	0.86	0.62	0.14	0.18	0.51	0.36	0.09
4	A	32	0.40	0.84	0.60	0.12	0.09	0.47	0.31	0.10
	B	32	0.37	0.84	0.60	0.12	0.09	0.47	0.31	0.10
	C	32	0.40	0.85	0.62	0.13	0.15	0.47	0.33	0.09
5	A	32	0.33	0.83	0.57	0.13	-0.07	0.48	0.32	0.13
	B	32	0.33	0.83	0.56	0.13	0.05	0.48	0.32	0.12
	C	32	0.33	0.88	0.58	0.14	0.09	0.48	0.32	0.11
6	A	32	0.38	0.86	0.61	0.14	0.17	0.48	0.33	0.09
	B	32	0.34	0.86	0.59	0.15	0.07	0.48	0.31	0.12
	C	32	0.35	0.86	0.60	0.15	0.13	0.48	0.33	0.09

continued

Grade	Path	Number of Items	p-value				Discrimination			
			Min	Max	Mean	SD	Min	Max	Mean	SD
7	A	32	0.35	0.84	0.61	0.10	0.06	0.50	0.33	0.12
	B	32	0.33	0.84	0.58	0.12	0.06	0.50	0.31	0.14
	C	32	0.35	0.84	0.60	0.10	0.10	0.50	0.32	0.12
8	A	32	0.38	0.86	0.62	0.12	0.04	0.51	0.33	0.11
	B	32	0.38	0.86	0.60	0.13	0.11	0.51	0.32	0.10
	C	32	0.38	0.86	0.62	0.12	0.14	0.51	0.32	0.10
11	A	32	0.28	0.81	0.58	0.13	-0.02	0.49	0.28	0.16
	B	32	0.28	0.81	0.58	0.13	-0.02	0.49	0.30	0.15
	C	32	0.28	0.81	0.58	0.14	-0.02	0.49	0.31	0.14

Table 8-5. 2016-17 MSAA: Item-Level Classical Test Theory StatisticsSummary by Grade and Path-Mathematics

Grade	Path	Number of Items	p-value				Discrimination			
			Min	Max	Mean	SD	Min	Max	Mean	SD
3	A	35	0.23	0.74	0.46	0.15	-0.02	0.47	0.21	0.12
	B	35	0.27	0.74	0.48	0.14	0.03	0.47	0.28	0.10
	C	35	0.28	0.93	0.55	0.15	0.12	0.47	0.31	0.08
4	A	35	0.25	0.76	0.44	0.13	-0.20	0.40	0.22	0.17
	B	35	0.25	0.76	0.45	0.13	-0.13	0.41	0.26	0.11
	C	35	0.25	0.76	0.47	0.13	0.11	0.41	0.26	0.08
5	A	35	0.08	0.73	0.41	0.16	-0.12	0.45	0.17	0.13
	B	35	0.22	0.73	0.44	0.14	-0.12	0.45	0.22	0.13
	C	35	0.25	0.73	0.49	0.14	0.05	0.45	0.26	0.10
6	A	35	0.30	0.79	0.50	0.14	-0.02	0.46	0.21	0.13
	B	35	0.32	0.79	0.53	0.13	-0.02	0.46	0.29	0.12
	C	35	0.29	0.92	0.59	0.13	0.09	0.46	0.33	0.08
7	A	35	0.24	0.81	0.49	0.13	-0.04	0.40	0.17	0.12
	B	35	0.30	0.81	0.50	0.11	-0.04	0.44	0.24	0.11
	C	34	0.34	0.90	0.56	0.14	0.10	0.44	0.30	0.08
8	A	35	0.28	0.75	0.46	0.13	-0.13	0.40	0.22	0.12
	B	35	0.32	0.73	0.49	0.12	-0.03	0.40	0.27	0.10
	C	35	0.30	0.79	0.54	0.11	0.06	0.42	0.31	0.08
11	A	35	0.28	0.71	0.46	0.12	-0.15	0.43	0.17	0.15
	B	35	0.33	0.71	0.47	0.11	-0.06	0.46	0.25	0.13
	C	35	0.33	0.71	0.52	0.11	0.12	0.48	0.32	0.09

8.2 Differential Item Functioning

The Code of F air Testing Practices in Education (J oint Committee on Testing Practices, 2004) explicitly states that subgroup differences in performance should be examined when sample sizes permit and that actions should be taken to ensure that differences in performance are due to construct-relevant, rather than irrel evant, factors. Chapter 3 of Standards for Educational and Psychological Testing (AERA et al., 2014) includes similar guidelines. A s part of the effort to identify such problems, M SAA items were evaluated in terms of DIF statistics.

For M SAA , the standardization DIF procedure (D orans \& K ulick, 1986) was employed to evaluate subgroup differences. The standardization DIF procedure is designed to identify items for which subgroups of interest perform differently, beyond the impact of differences in overall achievement. The DIF procedure calculates the difference in item performance for two groups of students (at a time) matched for achievement on the total test. Specifically, average item performance is calculated for students at every total score. Then an overall average is calculated, weighting the total score distribution so that it is the same for the two groups.

When differential performance between two groups occurs on an item (i.e., a DIF index in the "low" or "high" categories, explained below), it may or may not be indicative of item bias. Course-taking patterns or differences in school curricula can lead to DIF but for construct-relevant reasons. On the other hand, if subgroup differences in performance can be traced to differential experience (such as geographical living conditions or access to technology), the inclusion of such items should be reconsidered.

For the 2016-17 M SA A, six subgroup comparisons were evaluated for DIF:

- M ale vs. female
- White vs. Black
- White vs. Hispanic
- White vs. A merican Indian
- N ot low socioeconomic status (SES) vs. Iow SES
- Not Limited English Proficiency (LEP) vs. LEP (including current, exited one year, and exited two years)

The DIF statistics were calculated based only on the members of the subgroup in question in the computations; values were calculated only for subgroups with 100 or more students. The tables in A ppendix H present the number of items classified as either "low" or "high" DIF, overall and by group favored. Computed DIF indices have a theoretical range from -1.0 to 1.0 for selected-response items. Dorans and Holland (1993) suggested that index values between -0.05 and 0.05 should be considered negligible. The preponderance of M SAA items fell within this range (see Tables $\mathrm{H}-1$ and $\mathrm{H}-2$ in A ppendix H). Dorans and Holland further stated that items with values between -0.10 and -0.05 and between 0.05 and 0.10 (i.e., "low" DIF) should be inspected to ensure that no possible effect is overlooked, and that items with values outside the -0.10 to 0.10 range (i.e., "high" DIF) are more unusual and should be examined very carefully.

The number of items with a "high" DIF index for each tier is shown in Tables 8-6 and 8-7. Since an item can exhibit DIF for multiple comparisons, the item was counted once if any of the comparisons showed "high" DIF.

Table 8-6. 2016-17 MSAA: Number of Items with "High" DIF by Tier—ELA

Grade	Tier 1	Tier 2	Tier 3	Tier 4
3	$0(9)$	$0(16)$	$1(11)$	$0(5)$
4	$0(11)$	$0(11)$	$3(15)$	$1(6)$
5	$0(10)$	$1(10)$	$2(16)$	$0(5)$
6	$1(13)$	$1(10)$	$1(15)$	$0(7)$
7	$1(11)$	$0(11)$	$0(16)$	$0(7)$
8	$2(10)$	$0(12)$	$1(15)$	$0(6)$
11	$0(11)$	$0(15)$	$0(11)$	$0(6)$

Note: The numbers in the parentheses are the total number of items in each tier.

Table 8-7. 2016-17 MSAA: Number of Items with "High" DIF by Tier-Mathematics

Grade	Tier 1	Tier 2	Tier 3	Tier 4
3	$0(10)$	$0(20)$	$1(20)$	$0(5)$
4	$1(10)$	$1(20)$	$0(20)$	$0(5)$
5	$0(10)$	$3(20)$	$2(20)$	$0(5)$
6	$0(10)$	$1(21)$	$3(19)$	$1(5)$
7	$0(10)$	$0(19)$	$1(20)$	$0(5)$
8	$1(10)$	$1(20)$	$2(20)$	$1(5)$
11	$0(10)$	$0(20)$	$0(20)$	$0(5)$

Note: The numbers in the parentheses are the total number of items in each tier.

In addition to the values seen in A ppendix H (Tables $\mathrm{H}-1$ and $\mathrm{H}-2$), Tables 8-6 and 8-7 also show that only a few items were classified as "high" DIF for each grade and each tier.

8.3 Dimensionality Analysis

B ecause tests are constructed with multiple content-area subcategories and their associated knowledge and skills, the potential exists for a large number of dimensions being invoked beyond the common primary dimension. Generally, the subcategories are highly correlated with each other; therefore, the primary dimension they share typically explains an overwhelming majority of variance in test scores. In fact, the presence of just such a dominant primary dimension is the psychometric assumption that provides the foundation for the unidimensional item response theory (IRT) models that are used for calibrating, linking, scaling, and equating the 2016-17 M SA A multistage tests.

The purpose of dimensionality analysis is to investigate whether violation of the assumption of test unidimensionality is statistically detectable and, if so, (a) the degree to which unidimensionality is violated and (b) the nature of the multidimensionality. Findings from dimensionality analyses performed on the 2016-

17 M SAA core items for ELA and mathematics are reported below. (N ote: Only core items were analyzed since they are used for score reporting.)

The dimensionality analyses were conducted using the nonparametric IRT-based methods DIM TEST (Stout, 1987; Stout, Froelich, \& Gao, 2001) and DETECT (Zhang \& Stout, 1999). B oth of these methods use as their basic statistical building block the estimated average conditional covariances for item pairs. A conditional covariance is the covariance between two items conditioned on expected total score for the rest of the test, and the average conditional covariance is obtained by averaging across every possible conditioning score. W hen a test is strictly unidimensional, all conditional covariances are expected to take on values within random noise of zero, indicating statistically independent item responses for examinees with equal expected total test scores. Nonzero conditional covariances are essentially violations of the principle of local independence, and local dependence implies multidimensionality. Thus, nonrandom patterns of positive and negative conditional covariances are indicative of multidimensionality.

DIM TEST is a hypothesis-testing procedure for detecting violations of local independence. The data are first divided into a training sample and a cross-validation sample. Then an exploratory analysis of the conditional covariances is conducted on the training sample data to find the cluster of items that displays the greatest evidence of local dependence. The cross-validation sample is then used to test whether the conditional covariances of the selected cluster of items displays local dependence, conditioned on total score on the nonclustered items. The DIM TEST statistic follows a standard normal distribution under the null hypothesis of unidimensionality.

The DETECT statistic is an effect-size measure of multidimensionality. A s with DIM TEST, the data are first divided into a training sample and a cross-validation sample. The training sample is used to find a set of mutually exclusive and collectively exhaustive clusters of items that best fit a systematic pattern of positive conditional covariances for pairs of items from the same cluster and negative conditional covariances from different clusters. Next, the clusters from the training sample are used with the cross-validation sample data to average the conditional covariances: W ithin-cluster conditional covariances are summed, from this sum the between-cluster conditional covariances are subtracted, this difference is divided by the total number of item pairs, and this average is multiplied by 100 to yield an index of the average violation of local independence for an item pair. DETECT values less than 0.2 indicate very weak multidimensionality (or near unidimensionality); values of 0.2 to 0.4 , weak to moderate multidimensionality; values of 0.4 to 1.0 , moderate to strong multidimensionality; and values greater than 1.0, very strong multidimensionality (Roussos \& Ozbek, 2006).

DIM TEST and DETECT were separately applied to three operational paths of each grade on the 2016-17 M SAA ELA and mathematics tests. The data for each path were split into a training sample and a cross-validation sample. Every path had at least 640 student examinees, so every training sample and crossvalidation sample had at least 320 students. DIM TEST was then applied to every path. DETECT was applied
to each data set for which the DIM TEST null hypothesis was rejected to estimate the effect size of the multidimensionality.

Even though the sample sizes were not large for the M SAA test paths, the DIM TEST null hypothesis was rejected at a significance level of 0.01 for every data set except Path C for grades 6, 7, and 8 ELA. The nonrejection for the three ELA paths was likely due to the combined effects of the presence of weak multidimensionality and small sample size. Next, DETECT was used to estimate the effect size for the violations of local independence for all the tests for which DIM TEST rejection occurred. Table 8-8 displays the multidimensional effect size estimates from DETECT. (Note: The 2015-16 M SAA had only one operational form.)

Table 8-8. 2016-17 MSAA: Average Multidimensional Effect Sizes by Content Area and Grade ${ }^{1}$

Path	Content Area	Grade	Multidimensionality Effect Size	
			2015-16	2016-17
A	ELA	3	1.39	1.49
		4	1.27	1.80
		5	0.72	0.93
		6	1.07	1.73
		7	0.98	1.68
		8	0.96	1.71
		11	0.78	2.10
		Average	1.02	1.64
	Mathematics	3	1.09	1.81
		4	1.10	1.30
		5	1.12	1.37
		6	1.18	2.20
		7	1.22	1.95
		8	0.92	0.84
		11	0.71	1.57
		Average	1.05	1.58
B	ELA	3	1.39	0.87
		4	1.27	0.68
		5	0.72	1.49
		6	1.07	0.30
		7	0.98	1.23
		8	0.96	0.40
		11	0.78	0.83
		Average	1.02	0.83
	Mathematics	3	1.09	1.12
		4	1.10	1.12
		5	1.12	1.20
		6	1.18	1.02
		7	1.22	1.75

Path	Content Area	Grade	Multidimensionality Effect Size	
			2015-16	2016-17
B	Mathematics	8	0.92	1.08
		11	0.71	1.49
		Average	1.05	1.26
C	ELA	3	1.39	0.18
		4	1.27	0.14
		5	0.72	0.33
		6	1.07	- ${ }^{2}$
		7	0.98	-
		8	0.96	-
		11	0.78	0.20
		Average	1.02	0.21
	Mathematics	3	1.09	0.39
		4	1.10	0.54
		5	1.12	0.41
		6	1.18	0.30
		7	1.22	0.47
		8	0.92	1.00
		11	0.71	0.34
		Average	1.05	0.49

[^0]Due to the stage adaptive design, the DETECT results showed an interesting trend. Path A generally showed strong or very strong multidimensionality (similar to 2015-16) whereas Path C generally showed very weak and weak to moderate multidimensionality. The DETECT values for ELA Path B ranged from indicating weak to moderate multidimensionality, moderate to strong multidimensionality, and very strong multidimensionality. However, all the mathematics Path B displayed very strong multidimensionality.

Given the unusually large DETECT indices produced for Path A and sometimes for Path B, it was important to identify the source(s) of the violations of local independence. Hence, we investigated how DETECT divided the tests into clusters to see if there were any discernable patterns with respect to known substantive item characteristics. In previous years we found a strong and consistent pattern related to the answer keys of the items in each cluster- the placement of the correct-response key option was a very strong indicator of the cluster membership of nearly every item. We repeated this investigation this year, and found that this same pattern occurred for Form 1 for all the grades for both mathematics and ELA. As a reminder of this pattern, consider the following example for grade 3 mathematics Path A. This path had 35 items, and the DETECT analysis reported a three-cluster solution. The first cluster contained 12 items, the second had 13 items, and the third had 10 items. The first cluster included all 11 items for which "A" was the correct
response option, and the remaining one item in that cluster was an open-response item. The second cluster contained all 13 items for which the middle response option (" B " for three-option items) was the correct response option. The third cluster contained all 11 items for which the last response option ("B" for twooption items and "C" for three-option items) was the correct response option.

The same pattern in regard to the answer keys was also found to be present for nearly every Path B only grades 6 and 8 ELA did not show significant separation of keys, but they were also the ones with the smallest DETECT values (0.3 for grade 6 and 0.4 for grade 8). Interestingly, Path C for most of the grade/content-area combinations did not show significant separation with regard to key options. Path C showed significant separation of keys only for grades 4,7 , and 8 mathematics, and these had the largest DETECT values ($0.54,0.47$, and 1 , respectively), all indicating moderate to strong multidimensionality.

As in the past years, these dimensionality analysis results (especially Path A and Path B) continue to indicate a violation of local independence having to do with how some student scores are related to the placement of the correct response options. Recall that the clustering from the DETECT outputs indicated that the conditional covariances for pairs of items from the same cluster were positive, while the conditional covariances from different clusters were mostly negative. Thus, the conditional covariances suggested that if a group of examinees (with the same level of proficiency) correctly responded to an item where the first option ("A") is the correct-response key option, those examinees tended to correctly respond to other items where " A " is the correct-response key option; while the same group of examinees tended to incorrectly respond to other items where the correct-response key option is either the middle option ("B" for three-option selectedresponse items) or the last option ("B" for two-option selected-response items and "C" for three-option selected-response items).

A fter further investigation, we determined that these violations of local independence were caused by a small but substantial percentage of the students responding to a substantial number of consecutive items by always choosing one particular response option for those items. For convenience, we shall use the term "stringers" to refer to examinees who exhibit this behavior.

W hile this item clustering pattern related to answer keys was also noted in previous years, the manifestation of this pattern this year was slightly different. The pattern varied by multistage test (MST) path. The pattern was much stronger in Path A as compared to past years. The pattern in Path B, while still strong, was weaker than in Path A; and the pattern was nearly absent from Path C. Because the M ST routed examinees according to their Stage 1 performance, these results clearly indicate that the lower the performance level of a group of students, the greater the tendency for stringer behavior.

In general, it is important that violations of local independence be understood, monitored, and controlled on tests. The violations of local independence that are related to the ordering of the correctresponse option in selected-response items are a phenomenon that will continue to require close study.

CHAPTER 9 ITEM RESPONSE THEORY SCALING AND EQUATING

This chapter describes the procedures used to calibrate, equate, and scale the M SAA tests. During the course of these psychometric analyses, a number of quality-control procedures and checks on the processes were implemented. These procedures included evaluation of item parameters and their standard errors for reasonableness, examining test characteristic curves (TCCs) and test information functions (TIFs) for reasonableness, evaluation of model fit, and evaluation of the scaling results (e.g., parallel processing by the Data and Reporting Services and Psychometrics and Research Departments, comparison of lookup tables to the previous year's lookup tables).

9.1 Item Response Theory

All M SAA items were calibrated using item response theory (IRT). IRT uses mathematical models to define a relationship between an unobserved measure of student performance, usually referred to as theta (θ), and the probability (p) of getting a dichotomous item correct. This mathematical relationship is referred to as the item characteristic curve (ICC). In IRT, all items are assumed to be independent measures of the same construct (i.e., of the same θ). A nother way to think of θ is as a mathematical representation of the latent trait of interest. Several common IRT models are used to specify the relationship between θ and p (Hambleton \& Swaminathan, 1985; Hambleton \& van der Linden, 1997). The process of determining the specific mathematical relationship between θ and p is called item calibration. A fter items are calibrated, they are defined by a set of parameters that specify a nonlinear, monotonically increasing relationship between θ and p. Once the item parameters are known, an estimate of θ for each student can be calculated based on the student's observed responses to the items. This estimate, $\hat{\theta}$, is considered to be an estimate of the student's true score or a general representation of student performance. It has characteristics that may be preferable to those of raw scores for equating purposes.

For the 2016-17 M SAA tests, the two-parameter logistic (2PL) model was used to estimate the ICC for dichotomous items. The 2PL model for dichotomous items can be defined as:

$$
P_{i}\left(\theta_{j}\right)=\frac{\exp \left[D a_{i}\left(\theta_{j}-b_{i}\right)\right]}{1+\exp \left[D a_{i}\left(\theta_{j}-b_{i}\right)\right]},
$$

where
i indexes the items,
j indexes students,
a represents item discrimination,
b represents item difficulty, and
D is a normalizing constant equal to 1.701 .

For more information about item calibration and determination, the reader is referred to Lord and Novick (1968), Hambleton and Swaminathan (1985), or Baker and K im (2004).

9.2 Calibration Procedure

Because the 2016-17 M SAA was a pre-equated assessment program, the item parameters for the 2016-17 operational administration came from calibrations that were conducted in previous years. Items that were previously used operationally were calibrated in the post-equating procedures that were implemented after the corresponding operational administrations. Items that were previously used as only field-test items were calibrated in the corresponding field-test calibration that occurred after the calibration of the operational items. No new calibrations were run for the 2016-17 M SAA prior to the reporting of scores. In this section we describe the procedures that were used to conduct the calibrations. Note that the past calibrations were conducted on fixed-form tests. The 2016-17 M SAA was the first implementation of the multistage version of the M SAA program.

In calibrating the operational items for a given year, first, an off-scale calibration was conducted on all the operational items using PARSCALE (M uraki \& B ock, 2003). At this point, each and every item was carefully examined for model fit. In particular, visual inspection of the item fit plots was conducted. The empirical proportions of correct responses at a given level of ability must follow the shape of the model-based curve. In addition, the item parameter estimates were inspected. The discrimination parameters should not be extreme in either direction (neither greater than 3 nor less than 0.25), the difficulty parameters should also not be extreme (generally between -3 and 3 , and definitely between -4 and 4), and the standard error of the difficulty parameters should generally be less than 0.3).

The equating set (a subset of the operational items) was then carefully chosen to be representative of the test as a whole, and the equating items were evaluated to ensure only psychometrically stable items were used. For any equating design, it is critical that rigorous procedures are implemented to monitor the quality of the equating and check that the assumptions underlying the equating are not violated. M easured Progress psychometricians have conducted research studies (Hagge \& K eller, 2009; K eller et al., 2008; K eller et al., 2007; Parker et al., 2009) in this regard and have developed tools to estimate equating error across years under realistic violations of the equating assumptions. The Psychometrics and Research Department monitors particular well-known violations of IRT equating assumptions and uses the research to estimate their effects on the reliability and validity of the equating. Specifically, the equating data were analyzed in detail for scale drift through traditional delta analyses and b-b analyses. The delta analysis converts p-values to a type of z score called delta scores using the inverse of the normal cumulative function, followed by a linear transformation to a metric with a mean of 13 and a standard deviation of 4 (Dorans \& Holland, 1993; M ichaelides, 2003). The delta analysis then compared the old delta to the new delta using linear regression analysis. A standardized perpendicular difference from the regression line was calculated for each item; any item with a difference of a magnitude of 3 or greater was flagged for drift. The b-b analyses were similar in
nature, with the main difference being that the IRT b-parameters are used rather than transformed p-values. Furthermore, special procedures were enacted during the calibration phase to check that the quality of the equating items was maintained consistently across years. Equating items that displayed lack of stability (e.g., standard error of the b parameters being large, inadequate model-data fit, etc.) were flagged and removed from equating usage. Using this equating set, the Stocking-L ord transformation constants were cal culated to determine the relationship between the off-scale calibration and the base-year scale established in the first year of the program. The Stocking-Lord transformation was then applied to all the off-scale operational item parameters to bring them onto the base-year scale.

Next, the field-test items were calibrated. First, an off-scale calibration was conducted on all the operational and field-test items. Then the field-test items were evaluated for model-fit in the same way as described above for the operational items. B ased on the model-fit evaluation, the field-test items were classified as either do-not-use (DNU) or use-with-caution (UWC) if any model-fit issues were identified. Items that were not classified as DNU were considered eligible. All items that were not classified as DNU were then brought onto the operational scale using the fixed-common-item-parameter (FCIP) calibration method. In this method, the operational items are first fixed to their on-scale values, and then the field-test items are brought onto the operational scale in a PA RSCALE run. A fter the field-test items were brought onto scale, their model-fit was again evaluated as described above. All items not classified as DNU were then uploaded into the item bank.

9.3 Item Response Theory Results

The tables in A ppendix I give the IRT item parameters for all the core items on the 2016-17 M SA A tests by grade and content area. The statistics for the core items are summarized in Tables 9-1 through 9-3. The mean item parameter estimates shown in the tables below are within generally acceptable and expected ranges. For easy reference, Table 9-1 displays the means and standard deviations averaged across all core items for each grade and content area.

Table 9-1. 2016-17 MSAA: IRT Summary Statistics Overall

Content Area	Grade	Number of Items	a	$S D(a)$	b	$S D(b)$
	3	41	0.66	0.26	-0.58	0.66
	4	43	0.71	0.34	-0.48	0.66
ELA	5	41	0.68	0.32	-0.32	0.73
	6	45	0.75	0.41	-0.20	0.89
	7	45	0.74	0.45	-0.38	0.60
	8	43	0.75	0.40	-0.45	0.60
	11	43	0.80	0.43	-0.36	0.86
Mathematics	3	55	0.67	0.39	0.05	0.78
	5	55	0.54	0.28	0.39	1.03
	5	55	0.56	0.28	0.49	0.93

Content Area	Grade	Number of Items	a	SD (a)	b	$S D(b)$
	6	55	0.67	0.25	-0.09	0.73
Mathematics	7	54	0.63	0.24	0.04	0.85
	8	55	0.63	0.22	0.01	0.71
	11	55	0.67	0.22	0.13	0.57

Although the IRT statistics appear slightly more variable than the classical statistics, they remain consistent with them; the difference between the content areas is somew hat expected and the design of the assessments calls for ELA items to be administered in sets, while the mathematics design does not. Because the items were developed to correspond to different tiers, the item statistics have also been summarized by tier for ELA (Table 9-2) and mathematics (Table 9-3).

Table 9-2. 2016-17 MSAA: IRT Summary Statistics by Grade and Tier—ELA

Grade	Tier	Number of Items	a	SD (a)	b	$S D(b)$
3	1	9	0.89	0.17	-1.29	0.36
	2	16	0.60	0.25	-0.34	0.73
	3	11	0.60	0.24	-0.36	0.47
	4	5	0.56	0.24	-0.56	0.24
4	1	11	1.00	0.30	-1.26	0.40
	2	11	0.54	0.26	-0.33	0.44
	3	15	0.65	0.33	-0.27	0.49
	4	6	0.68	0.33	0.12	0.56
5	1	10	1.06	0.29	-1.13	0.26
	2	10	0.59	0.26	-0.12	0.57
	3	16	0.56	0.20	-0.05	0.72
	4	5	0.53	0.24	0.04	0.50
6	1	13	1.20	0.29	-1.08	0.23
	2	10	0.75	0.34	-0.15	0.66
	3	15	0.53	0.22	0.09	0.79
	4	7	0.39	0.23	0.72	0.83
7	1	11	1.25	0.47	-1.10	0.31
	2	11	0.76	0.34	-0.54	0.32
	3	16	0.53	0.27	0.00	0.41
	4	7	0.39	0.12	0.11	0.41
8	1	10	1.08	0.49	-1.11	0.33
	2	12	0.93	0.31	-0.57	0.40
	3	15	0.50	0.18	-0.17	0.51
	4	6	0.42	0.16	0.20	0.33
11	1	11	1.06	0.51	-1.13	0.29
	2	15	0.89	0.28	-0.58	0.31
	3	11	0.57	0.46	0.37	1.05
	4	6	0.53	0.13	0.27	0.74

Table 9-3. 2016-17 MSAA: IRT Summary Statistics by Grade and Tier-Mathematics

Grade	Tier	Number of Items	a	SD (a)	b	$S D(b)$
3	1	10	0.63	0.16	-0.98	0.28
	2	20	0.78	0.45	-0.06	0.41
	3	20	0.56	0.35	0.51	0.61
	4	5	0.72	0.54	0.74	1.03
4	1	10	0.44	0.18	-1.08	0.65
	2	20	0.56	0.31	0.76	0.74
	3	20	0.60	0.29	0.59	0.76
	4	5	0.39	0.19	1.10	1.09
5	1	10	0.67	0.30	-0.75	0.30
	2	20	0.57	0.26	0.41	0.54
	3	20	0.52	0.27	1.02	0.87
	4	5	0.48	0.35	1.18	0.81
6	1	10	0.64	0.21	-0.99	0.24
	2	21	0.76	0.25	-0.06	0.59
	3	19	0.62	0.19	0.10	0.41
	4	5	0.57	0.48	0.79	1.16
7	1	10	0.63	0.22	-1.09	0.28
	2	19	0.75	0.25	-0.07	0.48
	3	20	0.54	0.20	0.52	0.64
	4	5	0.47	0.18	0.88	1.05
8	1	10	0.73	0.31	-0.93	0.46
	2	20	0.60	0.15	-0.01	0.45
	3	20	0.65	0.22	0.22	0.40
	4	5	0.42	0.17	1.08	0.85
11	1	10	0.78	0.21	-0.77	0.30
	2	20	0.72	0.23	0.16	0.28
	3	20	0.62	0.17	0.36	0.31
	4	5	0.44	0.16	0.90	0.61

Item difficulty tends to have a positive relationship with tier; as the tier increases, the items tend to be more difficult. The Tier 1 items appear to be less similar from the other tiers in terms of magnitude of difficulty, and the Tier 2 and Tier 3 items rarely overlap. This reversal of difficulty (between adjacent tiers) happens in grade 4 mathematics and grade 3 ELA. W e conducted further investigation in the two tests to determine the degree to which the intended tier difficulty structure does hold. That study is reported in A ppendix J. The study results indicate that:

ELA

- Tier by grade interaction effect on item difficulty is statistically non-significant and accounts for only 3.4 percent of the total variance in item difficulties across tiers
- M ain effect of grade on item difficulties is statistically significant but accounts for only 2.5 percent of the total variance
- M ain effect of tier in item difficulties is statically significant and explains 49.9 percent of the total variation in item difficulties
- The overall explained variance is 0.557

Mathematics

- Tier by grade interaction effect on item difficulty is statistically non-significant and accounts for only 3.5 percent of the total variance in item difficulties across tiers
- M ain effect of grade on item difficulties is statistically significant but accounts for only 5.8 percent of the total variance
- M ain effect of tier in item difficulties is statically significant and explains 32.2 percent of the total variation in item difficulties
- The overall explained variance is 0.414

These results indicate that the tier difficulty structure does hold as intended and designed in both ELA and mathematics.

The IRT statistics were also summarized by different paths (Tables 9-4 and 9-5).

Table 9-4. 2016-17 MSAA: IRT Summary Statistics by Grade and Path—ELA

Grade	Path	Number of Items	a	$S D(a)$	b	$S D(b)$
3	A	32	0.68	0.25	-0.62	0.73
	B	32	0.64	0.25	-0.49	0.68
	C	32	0.63	0.25	-0.50	0.65
4	A	32	0.69	0.35	-0.62	0.63
	B	32	0.68	0.33	-0.46	0.55
	C	32	0.63	0.31	-0.36	0.60
5	A	32	0.72	0.34	-0.40	0.78
	B	32	0.66	0.29	-0.29	0.74
	C	32	0.63	0.28	-0.22	0.75
6	A	32	0.89	0.38	-0.54	0.61
	B	32	0.76	0.40	-0.24	0.80
	C	32	0.75	0.41	-0.16	0.80
7	B	32	0.87	0.47	-0.59	0.56
	C	32	0.70	0.38	-0.34	0.52
	A	32	0.67	0.38	-0.30	0.51
11	B	32	0.84	0.42	-0.63	0.54
	C	32	0.77	0.38	-0.49	0.57
	A	32	0.73	0.39	-0.39	0.57

Table 9-5. 2016-17 MSAA: IRT Summary Statistics by Grade and Path-Mathematics

Grade	Path	Number of Items	a	SD (a)	b	SD (b)
3	A	35	0.64	0.28	-0.11	0.75
	B	35	0.68	0.35	0.03	0.69
	C	35	0.68	0.42	0.13	0.79
4	A	35	0.57	0.27	0.06	0.95
	B	35	0.61	0.30	0.35	0.95
	C	35	0.53	0.28	0.59	1.07
5	A	35	0.61	0.29	0.29	0.90
	B	35	0.58	0.28	0.48	0.95
	C	35	0.55	0.28	0.60	1.00
6	A	35	0.69	0.23	-0.31	0.65
	B	35	0.72	0.24	-0.16	0.60
	C	35	0.68	0.26	-0.03	0.73
7	A	35	0.65	0.22	-0.21	0.77
	B	35	0.63	0.23	0.00	0.72
	C	34	0.60	0.23	0.15	0.86
8	A	35	0.66	0.23	-0.18	0.64
	B	35	0.65	0.19	-0.01	0.51
	C	35	0.61	0.21	0.09	0.70
11	A	35	0.70	0.21	-0.06	0.56
	B	35	0.67	0.21	0.12	0.47
	C	35	0.65	0.22	0.24	0.57

The average item difficulty increased as the complexity of the path increased as intended. Due to the limitation of the item pool, the three versions in Stage 2 had overlapping items; hence, the observed small differences among the paths were expected.

The TCCs provide a more complete picture of the various paths. TCCs display the expected (average) raw score associated with each θ_{j} value between -4.0 and 4.0 . M athematically, the TCC is computed by summing the expected score on all the ICCs of all items that contribute to the raw score. Using the notation introduced in the previous section, the expected raw score at a given value of θ_{j} is

$$
E\left(X \mid \theta_{j}\right)=\sum_{i=1}^{n} E\left(X_{i} \mid \theta_{j}\right)
$$

where
X indexes total raw test score,
X_{i} indexes the scored response on an item,
i indexes the items (and n is the number of items contributing to the raw score),
j indexes students (here, θ_{j} runs from -4 to 4), and
$E\left(X \mid \theta_{j}\right)$ is the expected raw score on the test for a student of ability θ_{j}.

The expected raw score monotonically increases with θ_{j}, consistent with the notion that students of high ability tend to earn higher raw scores than do students of low ability. M ost TCCs are "S-shaped" - flatter at the ends of the distribution and steeper in the middle.

The TIF, $I(\theta)$ (see Lord, 1980, for theoretical definitions and examples of equations), displays the amount of statistical information the test provides at each value of θ_{j}. Information functions depict test precision across the entire latent trait continuum. There is an inverse relationship between the information of a test and its standard error of measurement (SEM). The SEM at a given θ_{j} is approximately equal to the inverse of the square root of the statistical information at θ_{j} (Hambleton, Swaminathan, \& R ogers, 1991), as follows:

$$
\operatorname{SEM}\left(\theta_{j}\right)=\frac{1}{\sqrt{I\left(\theta_{j}\right)}}
$$

Compared to the tails, TIFs are often higher near the middle of the θ distribution where most students generally are located and where most items are sensitive by design. A ppendix K shows graphs of the TCCs and TIFs for each grade/content area.

9.4 Equating

The purpose of equating is to ensure that scores obtained from different forms of a test are equivalent to each other. Equating may be used if multiple test forms are administered in the same year, as well as to equate one year's forms to those given in the previous year. Equating ensures that students are not advantaged or disadvantaged because the test form they took is easier or harder than those taken by other students.

All 2016-17 M SA A tests used item pre-equating methodology as described in K olen and Brennan (2014). Item pre-equating allows the raw-to-scaled score conversion to be produced before the form is administered, which in turn allows for faster reporting and turnaround times. In item pre-equating, new forms are built from a pool of preexisting IRT-calibrated items. In addition to these operational items, new nonoperational items (e.g., field-test items) can also be included on the forms. The operational items are then used as a set of common items for transforming the item parameters of the nonoperational items so that they are the same θ scale as the IRT-calibrated item pool. This allows for the item pool to be expanded continually.

However, with pre-equating there are a number of cautions that need to be taken into consideration. K olen and B rennan (2014) state that, to ensure items behave the same on each administration, the items should appear in the same contexts and positions operationally as they did non-operationally. Thus, care must be taken to avoid significant shifts in position and context. A ny drift must be carefully monitored and controlled to ensure comparability between forms of the test. Section 11.1 describes the scale validation, postequated check procedures.

Item parameters for the 2016-17 operational administration were calibrated after the 2015-16 M SAA operational administration. As such, no new calibrations were run for the operational items on these preequated tests. Raw score to scaled score lookups are displayed in A ppendix L.

9.5 Achievement Standards

Cutpoints for M SAA in ELA and mathematics were set in A ugust 2015. Details of the standard setting procedures can be found in the standard setting report (M easured Progress, 2015). The cuts on the theta scale, established at those meetings, are presented in Table 9-6. A s alluded to in the discussion of equating above, the scale was established during that base year and the forms serve as the reference for subsequent equating. A Iso shown in the table are the cutpoints on the reporting score scale (described next). Note that examinees classified in Levels 3 and 4 are considered "proficient." These cutpoints will remain fixed throughout the assessment program unless standards are reset for any reason.

Table 9-6. 2016-17 MSAA: Cut Scores on the Theta Metric and Reporting Scale

Content Area	Grade	Theta				Scaled Score			
		Cut 1	Cut 2	Cut 3	Minimum	Cut 1	Cut 2	Cut 3	Maximum
ELA	3	-0.70	-0.18	0.72	1200	1234	1240	1251	1290
	4	-0.53	-0.01	1.43	1200	1234	1240	1258	1290
	5	-0.84	-0.13	1.16	1200	1232	1240	1256	1290
	6	-0.63	0.18	1.19	1200	1231	1240	1253	1290
	7	-0.59	-0.20	0.95	1200	1236	1240	1255	1290
	8	-0.75	0.04	0.78	1200	1230	1240	1250	1290
	11	-0.77	-0.37	0.90	1200	1236	1240	1255	1290
	3	-0.65	-0.28	0.77	1200	1236	1240	1254	1290
	4	-0.55	0.01	0.82	1200	1233	1240	1251	1290
	5	-0.84	-0.11	0.99	1200	1231	1240	1255	1290
	6	-0.61	-0.10	0.53	1200	1234	1240	1249	1290
	7	-0.91	-0.25	0.77	1200	1232	1240	1254	1290
	8	-0.66	-0.18	0.44	1200	1234	1240	1249	1290
	11	-0.70	-0.19	0.44	1200	1234	1240	1249	1290

Table 9-7 shows the percentage of students by performance-level categories al ong with the average and standard deviation of the scaled scores for each grade/content-area combination. A lso, the percentages of Levels 3 and 4 within each grade and content area are provided in the table.

Table 9-7. 2016-17 MSAA: Percentage of Students by Performance-Level Categories

Content Area	Grade	Number of Students	Levels					Average Scaled Score	SD of Scaled Score
			Level 1	Level 2	Level 3	Level 4	$\begin{gathered} \text { Levels } \\ 3 \& 4 \end{gathered}$		
ELA	3	3,683	37.96	19.09	20.77	22.18	42.95	1239.09	18.29
	4	3,883	41.90	16.69	29.51	11.90	41.41	1238.11	17.45
	5	3,941	29.46	26.08	32.28	12.18	44.46	1239.08	16.72
	6	4,084	37.68	26.96	21.33	14.03	35.36	1236.38	16.64
	7	4,047	36.97	14.88	29.03	19.13	48.16	1240.78	16.67
	8	4,292	32.27	29.45	17.47	20.81	38.28	1237.49	16.12
	11	3,646	33.05	18.76	33.98	14.21	48.19	1240.58	15.23
Mathematics	3	3,703	32.00	17.55	33.97	16.47	50.44	1240.48	17.14
	4	3,895	31.25	21.80	31.76	15.20	46.96	1237.88	16.13
	5	3,960	18.94	33.36	33.84	13.86	47.70	1240.29	15.99
	6	4,101	32.99	26.36	18.19	22.46	40.65	1239.29	16.62
	7	4,063	16.10	35.88	30.69	17.33	48.02	1241.43	16.68
	8	4,295	28.20	22.96	25.77	23.07	48.84	1240.19	15.91
	11	3,458	22.70	29.87	25.77	21.66	47.43	1240.42	15.69

A dditionally, graphs of the performance-level distributions are presented in Figures M-1 and M-2 in A ppendix M. Table 9-8 shows the percentage of students in each performance-level category by path, along with the average and standard deviation of the scaled scores for each grade/content-area combination. Note that the percentage of examinees being classified as Level 3 and Level 4 increased as we move from Path A to Path C. This trend was expected due to the stage adaptive nature of the 2016-17 M SAA.

Table 9-8. 2016-17 MSAA: Performance-Level Distributions by Path

Content Area	Grade	Path	Number of Students	Level 1	Level 2	Level 3	Level 4	Levels $3 \& 4$	Average Scaled Score	SD of Scaled Score	
				A	1,397	85.47	13.67	0.86		0.86	1223.08

Content Area	Grade	Path		Levels					Average Scaled Score	SD of Scaled Score
				$\begin{gathered} \text { Level } \\ 1 \end{gathered}$	Level 2	$\begin{gathered} \text { Level } \\ 3 \end{gathered}$	$\begin{gathered} \text { Level } \\ 4 \end{gathered}$	Levels 3 \& 4		
ELA	11	A	1,291	82.49	16.27	1.24		1.24	1227.46	12.33
		B	994	13.68	40.54	45.67	0.10	45.77	1239.87	4.36
		C	1,361	0.29	5.22	56.50	37.99	94.49	1253.55	11.46
Mathematics	3	A	1,507	71.00	19.18	9.82		9.82	1227.06	13.62
		B	856	13.08	34.58	52.10	0.23	52.33	1240.50	4.61
		C	1,340	0.22	4.85	49.55	45.37	94.92	1255.56	12.64
	4	A	1,342	75.19	19.60	5.22		5.22	1223.49	13.21
		B	1,414	14.14	37.84	46.32	1.70	48.02	1238.89	6.11
		C	1,139	0.70	4.48	44.95	49.87	94.82	1253.59	12.06
	5	A	1,331	54.32	41.85	3.83		3.83	1226.00	12.81
		B	1,489	1.81	50.03	47.15	1.01	48.16	1240.41	5.49
		C	1,140		1.67	51.49	46.84	98.33	1256.80	12.10
	6	A	1,650	74.97	23.45	1.58		1.58	1226.32	11.93
		B	769	14.30	60.99	22.89	1.82	24.71	1237.58	4.50
		C	1,682	0.36	13.38	32.34	53.92	86.26	1252.78	13.27
	7	A	1,293	48.96	45.55	5.49		5.49	1226.93	13.38
		B	1,535	1.30	54.33	43.71	0.65	44.36	1239.99	4.87
		C	1,235	0.08	2.83	40.89	56.19	97.08	1258.40	13.71
	8	A	1,545	69.77	26.54	3.69		3.69	1226.42	12.29
		B	920	12.83	44.35	38.04	4.78	42.82	1239.37	4.80
		C	1,830	0.82	9.18	38.25	51.75	90.00	1252.22	12.25
	11	A	1,047	69.15	26.65	4.20		4.20	1226.06	13.79
		B	1,149	5.22	59.70	33.51	1.57	35.08	1238.93	3.98
		C	1,262	0.08	5.39	36.61	57.92	94.53	1253.69	12.38

9.6 Reported Scaled Scores

B ecause the θ scale used in IRT calibrations is not readily understood by most stakeholders, reporting scales were developed for M SAA. The reporting scales are simple linear transformations of the underlying θ scale. The reporting scales are developed such that they range from 1200 through 1290 for all grade/contentarea combinations. The second cut is fixed at 1240 for each grade level. In other words, to be classified in Level 3 or above, a minimum scaled score of 1240 was required at all grades.

By providing information that is more specific about the position of a student's results, scaled scores supplement performance-level scores. Students' raw scores (i.e., total number of points) on the 2016-17 M SAA tests were translated to scaled scores using a data analysis process called scaling. Scaling simply converts from one scale to another scale. In the same way that a given temperature can be expressed on either Fahrenheit or Celsius scales, or the same distance can be expressed in either miles or kilometers, student scores on the 2016-17 M SA A tests can be expressed in raw or scaled scores.

It is important to note that converting from raw scores to scaled scores does not change students' performance-level classifications. Given the relative simplicity of raw scores, it is fair to question why scaled
scores for M SAA are reported instead of raw scores. Scaled scores make for more consistent reporting of results. The psychometric advantage of scaled scores over raw scores is that scaled scores are linear transformations of θ. Raw scores are not comparable from year to year (nor across Paths A, B, and C) because they are affected by differences in group ability and/or difficulty of the items that appear on each test form. Equating is a statistical procedure that is used to adjust for differences in form difficulty so that scores on alternate forms can be used interchangeably (K olen \& Brennan, 2014). Since the θ scale is used for equating, scaled scores are comparable from one year to the next.

The scaled scores are obtained by a simple translation of ability estimates $(\hat{\theta})$ using the linear relationship between threshold values on the θ metric and their equival ent values on the scaled score metric. Students' ability estimates are based on their raw scores and are found by mapping through the TCC. Scaled scores are calculated using the linear equation:

$$
S S=m \hat{\theta}+b
$$

where
m is the slope, and
b is the intercept.
For M SAA operational scaling, a scaling method with a proficient cut of 1240 and standard deviation of 15 with a lowest obtainable scaled score (LOSS) of 1200 and a highest obtainable scaled score (HOSS) of 1290 was adopted. A separate linear transformation is used for each grade and content-area combination. As previously stated, the transformation function was determined by fixing the Level 2/L evel 3 cut score and the standard deviation of the scale-that is, the cut score set at 1240 and the scaled score standard deviation of the base year fixed at 15 . Because only one point within the θ scaled score space and the standard deviation of the scale is fixed, the scaled score cutpoints between Level 1 and Level 2 and between Level 3 and Level 4 are free to vary across the grade and content-area combinations.

Table 9-9 shows the slope and intercept terms used to calculate the scaled scores for each content area and grade. Note that the values in Table 9-9 will not change unless the standards are reset. Also, in a given year it may not be possible to attain a particular scaled score, but the scaled score cuts will remain the same.

Table 9-9. 2016-17 MSAA: Scaled Score Slope and Intercept by Content Area and Grade

Content Area	Grade	Slope	Intercept
	3	11.7202	1242.054
	4	12.0593	1240.091
ELA	5	12.4236	1241.615
	6	12.3522	1237.813
	7	12.2964	1242.433
	8	12.6082	1239.457
	11	11.4922	1244.224

Content Area	Grade	Slope	Intercept
			continued
	3	13.0552	1243.665
	4	13.1002	1239.867
Mathematics	5	13.0769	1241.410
	6	12.8203	1241.253
	7	12.9093	1243.244
	8	13.0213	1242.358
	11	12.9897	1242.480

A ppendix L contains raw score to scaled score lookup tables for the 2016-17 M SAA tests. These are the actual tables used to determine student scaled scores, error bands, and performance levels.

A ppendix M presents the impact data for each grade by content area. Also, graphs of the scaled score cumulative frequency distributions for the last two years are presented in A ppendix M. The cumulative graphs show the proportion of students at or below each scaled score.

CHAPTER 10 RELIABILITY

Although an individual item's performance is an important focus for evaluation, a complete evaluation of an assessment must al so address the way items function together. Tests that function well provide a dependable assessment of the student's level of ability. Unfortunately, no test can do this perfectly. A variety of factors can contribute to a given student's score being either higher or lower than his or her true ability. For example, a student may misread an item or mistakenly fill in the wrong bubble when he or she knew the answer. Collectively, extraneous factors that affect a student's score are referred to as "measurement error." A ny assessment includes some amount of measurement error; that is, no measurement is perfect. This is true of all academic assessments- some students will receive scores that underestimate their true ability and other students will receive scores that overestimate their true ability. W hen tests have a high amount of measurement error, student scores are very unstable. Students with high ability may get low scores or vice versa. Consequently, one cannot reliably measure a student's true level of ability with such a test. A ssessments that have less measurement error (i.e., errors made are small on average and student scores on such a test will consistently represent their ability) are described as reliable.

There are a number of ways to estimate an assessment's reliability. One possible approach is to give the same test to the same students at two different points in time. If students receive the same scores on each test, the extraneous factors affecting performance are small and the test is reliable. (This is referred to as "testretest reliability.") A potential problem with this approach is that students may remember items from the first administration or may have gained (or lost) knowledge or skills in the interim between the two administrations. A solution to the remembering-items problem is to give a different but parallel test at the second administration. If student scores on each test correlate highly, the test is considered reliable. (This is known as "alternate forms reliability" because an alternate form of the test is used in each administration.) This approach, however, does not address the problem that students may have gained (or lost) knowledge or skills in the interim between the two administrations. In addition, the practical challenges of developing and administering parallel forms generally preclude the use of parallel forms reliability indices. One way to address the latter two problems is to split the test in half and then correlate students' scores on the two halftests; this in effect treats each half-test as a complete test. By doing this, the problems associated with an intervening time interval and with creating and administering two parallel form of the test are alleviated. This is known as a "split-half estimate of reliability." If the two half-test scores correlate highly, items on the two half-tests must be measuring very similar knowledge or skills. This is evidence that the items complement one another and function well as a group. This also suggests that measurement error will be minimal.

The split-half method requires psychometricians to select items that contribute to each half-test score. This decision may have an impact on the resulting correlation, since each different possible split of the test into hal ves will result in a different correlation. A nother problem with the split-half method of calculating
reliability is that it underestimates reliability, because test length is cut in half. All else being equal, a shorter test is less reliable than a longer test. Cronbach (1951) provided a statistic, α (alpha), that eliminates the problem of the split-half method by comparing individual item variances to total test variance. Cronbach's α was used to assess the reliability of the 2016-17 M SAA tests:

$$
\alpha \equiv \frac{n}{n-1}\left[1-\frac{\sum_{i=1}^{n} \sigma_{\left(Y_{i}\right)}^{2}}{\sigma_{x}^{2}}\right],
$$

where
i indexes the item,
n is the total number of items,
$\sigma_{\left(Y_{i}\right)}^{2}$ represents individual item variance, and
σ_{x}^{2} represents the total test variance.

10.1 Reliability and Standard Errors of Measurement

Tables 10-1 and 10-2 present descriptive statistics, Cronbach's α coefficient, and raw score standard errors of measurement (SEM s) for ELA and mathematics by grade and path. (Statistics are based on core items, which counted toward students' reported scores only.) The reliability of a test can also be exhibited in terms of the SEM s. SEM s can facilitate the interpretation of individual scores. W ith any given observed raw score point, the reasonable limits of the true score for the examinees can be calculated by using the SEM s. For more detailed description about the use of SEM s, the reader is referred to Gulliksen (1950) or A nastasi and Urbina (1997). SEM was also used to assess the reliability of the 2016-17 M SAA tests:

$$
S E M \equiv \sigma_{x} \sqrt{1-\alpha}
$$

where
σ_{x} represents the total test standard deviation, and α represents the reliability coefficient, Cronbach's alpha.

Table 10-1. 2016-17 MSAA: Reliability by Path—ELA

Grade	Path	Number of Students	Raw Score			Alpha	SEM
			Maximum	Mean	Standard Deviation		
3	A	1,160	32	12.75	3.99	0.57	2.61
	B	983	32	18.25	3.12	0.30	2.61
	C	1,303	32	25.43	3.66	0.68	2.07
4	A	1,671	32	14.36	4.08	0.57	2.67
	B	647	32	19.97	2.96	0.25	2.57
	C	1,359	32	24.84	3.57	0.64	2.15
5	A	1,234	32	12.22	3.91	0.56	2.60
	B	1,174	32	17.79	2.94	0.20	2.63
	C	1,339	32	24.21	3.48	0.60	2.20

continued

Grade	Path	Number of Students	Raw Score			Alpha	SEM
			Maximum	Mean	Standard Deviation		
6	A	1,826	32	14.85	4.43	0.65	2.63
	B	687	32	20.07	2.94	0.29	2.47
	C	1,361	32	24.64	3.37	0.62	2.08
7	A	1,253	32	13.31	4.08	0.59	2.63
	B	1,047	32	18.14	3.07	0.25	2.67
	C	1,545	32	24.31	3.44	0.58	2.22
8	A	1,848	32	14.79	4.22	0.60	2.66
	B	827	32	20.40	2.79	0.19	2.51
	C	1,426	32	25.30	3.23	0.58	2.10
11	A	1,126	32	12.45	3.83	0.52	2.64
	B	994	32	18.13	3.24	0.32	2.66
	C	1,361	32	23.33	3.57	0.62	2.19

Table 10-2. 2016-17 MSAA: Reliability by Path—Mathematics

Grade	Path	Number of Students	Raw Score			Alpha	SEM
			Maximum	Mean	Standard Deviation		
3	A	1,272	35	12.21	3.70	0.48	2.68
	B	856	35	15.78	3.04	0.15	2.80
	C	1,340	35	23.24	5.07	0.75	2.52
4	A	1,137	35	11.32	4.04	0.58	2.60
	B	1,414	35	15.26	3.42	0.34	2.79
	C	1,139	35	21.02	4.71	0.69	2.63
5	A	1,137	35	10.52	3.13	0.32	2.57
	B	1,489	35	14.56	3.01	0.15	2.78
	C	1,140	35	21.67	4.67	0.68	2.62
6	A	1,441	35	13.54	3.83	0.47	2.78
	B	769	35	17.17	3.37	0.30	2.82
	C	1,682	35	24.43	5.10	0.77	2.42
7	A	1,091	35	12.88	3.63	0.43	2.74
	B	1,535	35	16.34	3.02	0.12	2.84
	C	1,235	34	23.71	4.90	0.76	2.42
8	A	1,355	35	11.86	3.85	0.52	2.66
	B	920	35	16.08	3.12	0.15	2.87
	C	1,830	35	22.52	5.11	0.74	2.61
11	A	882	35	11.22	3.86	0.53	2.64
	B	1,149	35	14.64	2.74	-0.08	2.85
	C	1,262	35	22.40	5.57	0.79	2.58

B ecause different grades have different test designs, it is inappropriate to make inferences about the quality of one test by comparing its reliability to that of another test from a different grade. A dditionally, the reliability statistics provided in the table above should be cautiously interpreted because each form is only administered to a subgroup of relatively homogeneous examinees, resulting in less score variability within the subgroups, especially evident with Path B. Because of this restriction of range mentioned earlier, the
reliability coefficients are not comparable between different forms and are not comparable to reliability based on all the examinees (e.g., Cronbach's α 's from past years).

All of the Cronbach alpha coefficients in Tables 10-1 and 10-2 are low, relative to alphas reported for grade level assessments, which typically are in the $.80-.90$ range. The path C reliabilities in mathematics approach the more typically observed levels. However, the grade 11 mathematics coefficient is -0.08 . The technical brief in A ppendix N illustrates how a negative coefficient can occur. The brief concludes that the "negative value of Cronbach al pha can be attributed to a reduction in total raw score variance, but not in the sum of the item variances, that arises naturally from multistage testing." Cronbach alpha is a measure of the internal consistency of responses to items in a test. Although the groups of examinees who are routed to paths A, B, and C may be homogenous in terms of overall ELA and mathematics proficiency, it is likely that responses of students with significant cognitive disabilities to items are not consistent within examinees and across examinees in the same path. Other measures of score reliability may be more appropriate for estimating score reliability for paths A, B, and C, where item response consistency is not the focus. IRT marginal reliability estimates, which focuses on the reliability of student theta estimates, may be a more appropriate indicator of score reliability. Item response theory (IRT) marginal reliability was also calculated per grade, across the three paths within a given grade. IRT marginal reliability is based on extending the true score model to an IRT framework (Samejima, 1994) and provides an IRT-based estimate of the overall test reliability. Error variance is estimated as the mean squared conditional standard error of measurement (CSEM) of the theta estimates across students within a grade. Observed score variance is estimated as the variance of the theta estimates across students within a grade. Equivalently, the mean squared CSEM of the scaled scores and the variance of the scaled scores can be used in place of the CSEM of the theta estimates and the variance of the theta estimates, respectively. IRT marginal reliability is then given by the following formula:

$$
I R T \text { Marginal Reliability }=1-\frac{\overline{\operatorname{CSEM}(\theta)^{2}}}{\operatorname{Var}(\hat{\theta})}=1-\frac{\overline{\operatorname{CSEM}(S S)^{2}}}{\operatorname{Var}(S S)},
$$

$$
\begin{aligned}
& \text { where } \\
& \overline{\operatorname{CSEM}(\theta)^{2}} \text { is the mean squared CSEM, } \\
& \overline{\operatorname{CSEM}(S S)^{2}} \text { is the mean squared scaled CSEM, } \\
& \operatorname{Var}(\hat{\theta}) \text { is the variance of theta estimates, and } \\
& \operatorname{Var}(S S) \text { is the scaled score variance. }
\end{aligned}
$$

Tables 10-3 and 10-4 presents the IRT marginal reliability estimates, scaled score variance, and mean scaled CSEM s by grade for ELA and mathematics, respectively. A s shown in the tables, the values are all reached levels associated with adequate reliability (0.85 or more).

Table 10-3. 2016-17 MSAA: IRT Marginal Reliability by Grade-ELA

Grade	Number of Students	IRT Marginal Reliability	Scaled Score Variance	Mean Scaled CSEM
3	3,447	0.863	246.024	5.056
4	3,678	0.861	224.273	4.965
5	3,747	0.859	197.869	4.791
6	3,874	0.873	191.581	4.411
7	3,845	0.864	210.915	4.891
8	4,101	0.860	178.114	4.446
11	3,481	0.862	168.350	4.118

Table 10-4. 2016-17 MSAA: IRT Marginal Reliability by Grade-Mathematics

Grade	Number of Students	IRT Marginal Reliability	Scaled Score Variance	Mean Scaled CSEM
3	3,469	0.881	155.775	3.996
4	3,691	0.880	161.858	4.206
5	3,767	0.856	170.125	4.797
6	3,892	0.887	192.221	4.129
7	3,861	0.865	166.466	4.409
8	4,105	0.882	165.858	4.175
11	3,293	0.891	137.155	3.474

10.2 Subgroup Reliability

The reliability coefficients discussed in the previous section were based on all students who took a particular 2016-17 M SA A test. A ppendix 0 presents reliabilities for various subgroups of interest. Subgroup Cronbach's α 's and SEM s were calculated using the formula defined above based only on the members of the subgroup in question in the computations; values are calculated only for subgroups with 100 or more students.

For several reasons, the results of this section should be interpreted with caution. First, inherent differences between tests preclude making valid inferences about the quality of a test based on statistical comparisons with other tests. Second, reliabilities are dependent not only on the measurement properties of a test but on the statistical distribution of the studied subgroup. For example, it can readily be seen in A ppendix 0 that subgroup sample sizes may vary considerably, which results in natural variation in reliability coefficients. Alternatively, α, which is a type of correlation coefficient, may be artificially depressed for subgroups with little variability (Draper \& Smith, 1998). Third, there is no industry standard to interpret the strength of a reliability coefficient. This is particularly true when the population of interest is a single subgroup. A gain, the reliability statistics provided in the tables in A ppendix 0 should be cautiously interpreted because of the restriction of range mentioned earlier. The α coefficients are not comparable
between different paths and are not comparable to reliability based on all the examinees (e.g., Cronbach's α^{\prime} s from past years).

10.3 Reliability of Performance-Level Categorization

While related to reliability, the accuracy and consistency of classifying students into performance categories are even more important statistics in a standards-based reporting framework (Livingston \& Lewis, 1995). A fter the performance levels were specified and students were classified into those levels, empirical analyses were conducted to determine the statistical accuracy and consistency of the classifications. For M SAA , students are classified into one of four performance levels: Level 1, Level 2, Level 3, and Level 4. This section of the report explains the methodologies used to assess the reliability of classification decisions, and results are provided.

A ccuracy refers to the extent to which decisions based on test scores match decisions that would have been made if the scores did not contain any measurement error. A ccuracy must be estimated because errorless test scores do not exist. Consistency measures the extent to which classification decisions based on test scores match the decisions based on scores from a second, parallel form of the same test. Consistency can be evaluated directly from actual responses to test items if two complete and parallel forms of the test are given to the same group of students. In operational test programs, however, such a design is usually impractical. Instead, techniques have been developed to estimate both the accuracy and the consistency of classification decisions based on a single administration of a test. The Livingston and Lewis (1995) technique was used for the 2016-17 M SAA because it is easily adaptable to all types of testing formats, including mixed format tests.

The accuracy and consistency estimates reported in A ppendix 0 make use of "true scores" in the classical test theory sense. A true score is the score that would be obtained if a test had no measurement error. Of course, true scores cannot be observed and so must be estimated. In the Livingston and Lewis (1995) method, estimated true scores are used to categorize students into their "true" classifications.

For the 2016-17 M SAA , after various technical adjustments (described in Livingston \& Lewis, 1995), three 4×4 contingency tables of accuracy were created, one for each of the multistage test (MST) paths (Path A , Path B, Path C) for each grade/content-area combination, where cell [i, j] represented the estimated proportion of students whose true score fell into classification i (where $\mathrm{i}=1$ to 4) and whose observed score fell into classification j (where $j=1$ to 4). The sum of the diagonal entries (i.e., the proportion of students whose true and observed classifications matched) signified overall accuracy.

To calculate consistency, true scores were used to estimate the joint distribution of classifications on two independent, parallel test forms. Following statistical adjustments, per Livingston and Lewis (1995), a new set of three 4×4 contingency tables was created for each grade/content-area combination in ELA and mathematics, and populated by the proportion of students who would be categorized into each combination of classifications according to the two (hypothetical) parallel test forms. Cell [i, j] of this table represented the estimated proportion of students whose observed score on the first of the two parallel forms would fall into
classification i (where i = 1 to 4) and whose observed score on the second parallel form would fall into classification j (where $j=1$ to 4). The sum of the diagonal entries (i.e., the proportion of students categorized by the two forms into exactly the same classification) signified overall consistency.

A nother way to measure consistency is to use Cohen's (1960) coefficient κ (kappa), which assesses the proportion of consistent classifications after removing the proportion of consistent classifications that would be expected by chance. It is calculated using the following formula:

$$
\kappa=\frac{\text { (Observed agreement) }-(\text { Chance agreement })}{1-(\text { Chance agreement })}=\frac{\sum_{i} c_{i i}-\sum_{i} C_{i, ~} C_{i,}}{1-\sum_{i} c_{i .} C_{i}},
$$

where
$C_{i .}$ is the proportion of students whose observed performance level would be Level i (where $i=1-4$) on the first hypothetical parallel form of the test;
$C_{. i}$ is the proportion of students whose observed performance level would be Level i (where $i=1-4$) on the second hypothetical parallel form of the test; and
$C_{i i}$ is the proportion of students whose observed performance level would be Level i (where $i=1-4$) on both hypothetical parallel forms of the test.

Because κ is corrected for chance, its values are lower than other consistency estimates.

10.3.1 Accuracy and Consistency

The decision accuracy and consistency (DAC) analyses described above are provided in Tables P-1, P-2, and N-3 of A ppendix P. The tables include overall accuracy and consistency indices, including kappa. A ccuracy and consistency values conditional on performance level are also given. For these calculations, the denominator is the proportion of students associated with a given performance level. For example, the conditional accuracy value is 0.88 for Level 1 for grade 3 ELA Path A. This table indicates that among the students whose true scores placed them in this classification, 88% would be expected to be in this classification when categorized according to their observed scores. Similarly, a consistency value of 0.87 indicates that 87% of students with observed scores in Level 1 would be expected to score in this classification again if a second parallel test form were used. The relatively lower accuracy and consistency values conditional on performance levels, in particular the ones for Level 2 , result from the relatively small number of students who fall into this category and the narrower score ranges of the performance level. However, it is also a clear indication of where test development should focus on to improve the quality of the tests, even though the overall indexes are satisfactory. N ote that the sample size for Level 4 for Path A was so small that we collapsed Levels 3 and 4 into a single category for purposes of the DAC analysis conditional on performance level. This was as expected because the M ST was designed so that higher-achieving students were not intended to be routed to Path A. Similar sample size issues with Path B resulted in the collapsing of Levels 1 and 2 into a single category, as well as the collapsing of Levels 3 and 4 into a single category. Similarly, for Path C, Levels 1 and 2 needed to be collapsed into a single category.

For some testing situations, the greatest concern may be decisions around level thresholds. For example, in testing done for No Child Left Behind accountability purposes, the primary concern is distinguishing between students who are proficient and those who are not yet proficient. For the 2016-17 M SAA , Tables P-4, P-5, and P-6 in A ppendix P provide accuracy and consistency estimates at each cutpoint, as well as false positive and false negative decision rates. A false positive is the proportion of students whose observed scores were above the cut and whose true scores were below the cut. A false negative is the proportion of students whose observed scores were below the cut and whose true scores were above the cut. N ote that the same collapsing of performance levels as occurred with the DAC analysis conditional on performance level al so needed to be implemented for the DAC analysis conditional on cutpoint.

As with other methods of evaluating reliability, DAC statistics calculated based on small groups can be expected to be lower than those calculated based on larger groups. For this reason, the values presented in A ppendix N should be interpreted with caution. In addition, it is important to remember that it is inappropriate to compare DAC statistics between grades and content areas.

CHAPTER 11 VALIDITY

Because interpretations of test scores, and not a test itself, are evaluated for validity, the purpose of the 2016-17 M SAA Technical Report is to describe several technical aspects of the M SAA tests in support of score interpretations (A ERA et al., 2014). E ach chapter contributes an important component in the investigation of score validation: test development and design; test administration; scoring, scaling, and equating; item analyses; reliability; and score reporting. In addition, the Technical A dvisory Committee provides technical guidance on any questions related to the reliability and validity of the M SAA. Please reference A ppendix Q for a list of the Technical A dvisory Committee members.

As stated in the overview chapter, Standards for Educational and Psychological Testing (A ERA et al., 2014) provides a framew ork for describing sources of evidence that should be considered when constructing a validity argument. The evidence around test content, response processes, internal structure, relationship to other variables, and consequences of testing speaks to different aspects of validity, but those aspects are not distinct types of validity. Instead, each contributes to a body of evidence about the comprehensive validity of score interpretations.

Evidence on test content validity is meant to determine how well the assessment tasks represent the curriculum and standards for each content area. Content validation is informed by the item development process, including how the test blueprints and test items align to the curriculum and standards. Viewed through the lens provided by the standards, evidence based on test content is extensively described in Chapters 3 and 4. All of the following are components of validity evidence based on test content: item alignment with the States' Content Standards and the M SA A Core Content Connectors (CCCs); item bias, sensitivity, and content appropriateness review processes; adherence to the test blueprint; use of multiple item types; use of standardized administration procedures, with accommodated options for participation; and appropriate test administration training. As discussed earlier, all M SAA questions undergo several rounds of review for content fidelity and appropriateness. Items are presented to students in multiple formats (constructed-response and selected-response). Finally, tests are administered according to M SA A -mandated standardized procedures, with allowable accommodations, and all test administrators (TAs) are required to attend annual training sessions and pass a qualifying quiz prior to being allowed to administer tests.

Evidence based on internal structure is presented in great detail in the discussions of item analyses, reliability, and scaling and equating in Chapters 8 through 10. Technical characteristics of the internal structure of the assessments are presented in terms of classical item statistics (item difficulty, item-test correlation), differential item functioning (DIF) analyses, reliability, standard errors of measurement (SEM), and item response theory (IRT) parameters and procedures. Each test is equated to the same content test from the prior year to preserve the meaning of scores over time. In general, item difficulty and discrimination indices were in acceptable and expected ranges. V ery few items were answered correctly by nearly zero
percent or nearly 100 percent of the students. Similarly, the positive discrimination indices found on most items indicate that they were assessing consistent constructs, and that students who performed well on individual items tended to perform well overall. A s shown in Tables 8-6 and 8-7, very few items were identified as having large DIF, and all large DIF items underwent further sensitivity review. In regard to the IRT item parameters, Tables 9-2 through 9-5 support the claim that item difficulty increased as the Tier level increased. The performance-level percentages presented in Table 9-8 for Paths A, B, and C support the claim that the multistage test properly routed students to appropriate level tests in that very large differences in the purported directions occurred for every test. Tables 10-3 and 10-4 in the reliability chapter support the claim that the internal consistency of the tests (as calculated by the IRT-based approach) reached levels associated with adequate reliability (0.85 or more).

Evidence based on the consequences of testing is addressed in the scaled scores information in Chapter 9 and the reporting information in Chapter 7, as well as in the test interpretation guide (M SAA 2017 Guide for Score Report Interpretation; see A ppendix F), which is a separate document referenced in the discussion of reporting. Each of these chapters speaks to the efforts undertaken to ensure accurate and clear information is provided to the public (and parents/guardians and educators in particular) regarding test scores. Scaled scores offer the advantage of simplifying the reporting of results across content areas and subsequent years. Performance levels provide users with reference points for mastery at each content area, which is another useful and simple way to interpret scores. Several different standard reports are provided to stakeholders. Additional evidence of the consequences of testing could be supplemented with broader investigation of the impact of testing on student learning.

To further support the validation of the assessment program, additional studies might be considered to provide evidence regarding the relationship of M SAA results to other variables, including the extent to which scores from M SAA converge with other measures of similar constructs, and the extent to which they diverge from measures of different constructs. Relationships among measures of the same or similar constructs can sharpen the meaning of scores and appropriate interpretations by refining the definition of the construct.

The evidence presented in this report supports inferences of student achievement on the content represented from the States' Content Standards and the M SA A Core Content C onnectors (CCCs) for the M SAA for the purposes of program and instructional improvement and as a component of school accountability.

REFERENCES

Allen, M . J., \& Y en, W . M . (1979). Introduction to measurement theory. Belmont, CA : W adsworth, Inc.
A merican Educational Research A ssociation, A merican Psychological A ssociation, \& National Council on M easurement in Education. (2014). Standards for educational and psychological testing. W ashington, D.C.: A merican Educational Research A ssociation.

A nastasi, A., \& Urbina, S. (1997). P sychological Testing (7th ed.). Upper Saddle River, NJ : Prentice-Hall.
Baker, F. B., \& Kim, S-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New Y ork: M arcel Dekker, Inc.

Brown, F. G. (1983). Principles of educational and psychological testing (3rd ed.). Fort W orth: H olt, Rinehart, and Winston.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and P sychological M easurement, 20, 37-46.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. P sychometrika, 16, 297-334.
Dorans, N. J., \& Holland, P. W. (1993). DIF detection and description: M antel-H aenszel and standardization. In P. W. Holland \& H. W ainer (Eds.), Differential item functioning (pp. 35-66). Hillsdale, NJ: L awrence Erlbaum A ssociates.

Dorans, N. J., \& Kulick, E. (1986). Demonstrating the utility of the standardization approach to assessing unexpected differential item performance on the Scholastic A ptitude Test. J ournal of Educational M easurement, 23, 355-368.

Draper, N. R., \& Smith, H. (1998). Applied regression analysis (3rd ed.). New Y ork, NY : John W iley and Sons.

Forte, E. (2013a). Evaluating alignment for assessments developed using evidence-centered design. Paper presented at the A nnual M eeting of the N ational Council on M easurement in Education, San Francisco, CA.

Forte, E. (2013b). The next generation of alignment. Paper presented at the National Conference on Student A ssessment, W ashington, DC .

Gulliksen, H. (1950). Theory of M ental Tests. New Y ork, NY : John Wiley and Sons.
Hagge, S., \& K eller, R. (2009). Equating mixed-format tests: Examining the impact of intra-individual consistency in the IRT framework. Presented at the A merican Educational Research A ssociation, San Diego, CA.

Hambleton, R. K., \& Swaminathan, H. (1985). Item response theory: Principles and applications. Boston, M A : K luwer A cademic Publishers.

Hambleton, R. K., Swaminathan, H., \& Rogers, J. H. (1991). Fundamentals of item response theory. Newbury Park, CA: Sage.

Hambleton, R. K ., \& van der Linden, W . J. (1997). H andbook of modern item response theory. New Y ork, NY: Springer-V erlag.

J oint Committee on Testing Practices. (2004). Code of fair testing practices in education. W ashington, D.C.: National Council on M easurement in Education.

K eller, L., K eller, R., \& Parker, P. (2008). The effect of shifting content on the accuracy of equating. Presented at the A merican Educational Research A ssociation, New Y ork, NY.

K eller, R ., Kim, W ., Nering, M ., \& K eller, L. (2007). What breaks the equating? A preliminary investigation into threats to a five-year equating chain. Presented at the A merican Educational Research A ssociation, Chicago, IL.

K line, P. (2000). The handbook of psychological testing (2nd ed.). N ew Y ork, NY: Routledge.
K olen, M . J., \& B rennan, R. L. (2014). Test equating, scaling, and linking: M ethods and practices (3rd ed.). N ew Y ork, NY: Springer-V erlag.

Livingston, S. A., \& Lewis, C. (1995). Estimating the consistency and accuracy of classifications based on test scores. J ournal of E ducational M easurement, 32, 179-197.

Lord, F. M . (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: L awrence Erlbaum A ssociates.

Lord, F. M ., \& Novick, M . R. (1968). Statistical theories of meta test scores. Reading, M A : A ddison-W esley.
M easured Progress Department of Psychometrics and Research (2015). National C enter and State Collaborative (NCSC) standard setting report. Unpublished report.

M ichaelides, P. M. (2003). Sensitivity of IRT equating to the behavior of test equating item. Paper presented at the annual meeting of the A merican Educational Research A ssociation, Chicago, IL.

M uraki, E., \& Bock, R. D. (2003). PARSCA LE 4.1 [Computer software]. Lincolnwood, IL: Scientific Software International.

Parker, P., K eller, R., \& von Davier, A. (2009). The Examination of four equating methods: The effects of reclassifying students into performance categories and the population sensitivity assumption. Presented at the N ational Council on M easurement in Education, San Diego, CA .

Roussos, L. A., \& Ozbek, O. Y . (2006). Formulation of the DETECT population parameter and evaluation of DETECT estimator bias. Journal of Educational M easurement, 43, 215-243.

Samejima, F. (1994). Estimation of reliability coefficients using the test information function and its modifications. Applied Psychological M easurement, 18, 229-244.

Stocking, M. L., \& Lord, F. M . (1983). Developing a common metric in item response theory. Applied P sychological Measurement, 7, 201-210.

Stout, W . F. (1987). A nonparametric approach for assessing latent trait dimensionality. Psychometrika, 52, 589-617.

Stout, W . F., Froelich, A . G., \& Gao, F. (2001). Using resampling methods to produce an improved DIM TEST procedure. In A. B oomsma, M. A. J. van Duign, \& T. A. B. Snijders (Eds.), Essays on item response theory (pp. 357-375). New Y ork, NY: Springer-V erlag.

W ebb, N. L. (2005, N ovember). Alignment, depth of knowledge, and change. Paper presented at the annual meeting of the Florida Educational Research A ssociation, M iami, Florida.

Zhang, J., \& Stout, W. F. (1999). The theoretical DETECT index of dimensionality and its application to approximate simple structure. P sychometrika, 64, 213-249.

APPENDICES

APPENDIX A-ACCOMMODATION FREQUENCIES

Table A-1. 2016-17 MSAA: Accommodation Frequencies-Mathematics

Accommodations	Grades						
	3	4	5	6	7	8	11
LCI_Vision 1	203	213	199	221	234	229	157
SAR_Assistive_Presentation_After 2	n / a						
SAR_Assistive_Response_After 2	289	287	311	350	293	331	303
SAR_No_Accomm_Needed_After 3	784	900	993	1,046	1,128	1,172	1,098
SAR_Paper_Version_After $^{\text {- }}$	317	303	220	242	200	167	155
SAR_Scribe_After 5	1,188	1,233	1,215	1,237	1,085	1,080	571
SAR_Sign_Interpretation_After 6	48	48	48	49	24	29	36

${ }^{1}$: LCI_Vision - Input could occur through alternate keyboards, eye-gaze, switch devices, speech-to-text, and other similar input devices. Students are also expected to access text using AT devices (e.g., screen readers), but refreshable Braille display is not supported for presentation of text-based content for the first operational year.
${ }^{2}$: SAR_Assistive_Presentation_After - For the 2016-17 administration this field was eliminated from the MSAA Online Assessment System due to the other Assistive Technology (AT) accommodation option captured below in SAR_Assistive_Response_After.
${ }^{2}$: SAR_Assistive_Response_After - Assistive Technology (AT) for viewing, responding, or interacting with test items.
3: SAR_No_Accomm_Needed_After - No accommodations needed.
4: SAR_Paper_Version_After - Paper version of item/s.
${ }^{5}$: SAR_Scribe_After - A scribe will enter in the MSAA Online Assessment System the student-indicated answer to a selected-response item. For the constructed-response writing item, the scribe will record the student's response to the writing prompt on the response templates in the MSAA Online Assessment System.
${ }^{6}$: SAR_Sign_Interpretation_After - TA may communicate passages, items and response options using sign language to student.

Table A-2. 2016-17 MSAA: Accommodation Frequencies-ELA

Accommodations 2		3	4	5	6	7	8
		Grades					
LCI_Vision 1	203	212	198	219	233	230	164
SAR_Assistive_Presentation_After 2	n / a						
SAR_Assistive_Response_After 2	288	283	308	348	291	332	308
SAR_No_Accomm_Needed_After 3	782	900	990	1,044	1,124	1,175	1,145
SAR_Paper_Version_After 4	316	302	219	239	198	168	159
SAR_Scribe_After 5	1,184	1,229	1,209	1,235	1,082	1,080	613
SAR_Sign_Interpretation_After 6	48	48	48	50	24	30	35

${ }^{1}$: LCI_Vision - Input could occur through alternate keyboards, eye-gaze, switch devices, speech-to-text, and other similar input devices. Students are also expected to access text using AT devices (e.g., screen readers), but refreshable Braille display is not supported for presentation of text-based content for the first operational year.
${ }^{2}$: SAR_Assistive_Presentation_After - For the 2016-17 administration this field was eliminated from the MSAA Online Assessment System due to the other Assistive Technology (AT) accommodation option captured below in SAR_Assistive_Response_After.
${ }_{3}^{2}$: SAR_Assistive_Response_After - Assistive Technology (AT) for viewing, responding, or interacting with test items.
3: SAR_No_Accomm_Needed_After - No accommodations needed.
${ }^{4}$: SAR_Paper_Version_After - Paper version of item/s.
${ }^{5}$: SAR_Scribe_After - A scribe will enter in the MSAA Online Assessment System the student-indicated answer to a selected-response item. For the constructed-response writing item, the scribe will record the student's response to the writing prompt on the response templates in the MSAA Online Assessment System.
${ }^{6}$: SAR_Sign_Interpretation_After - TA may communicate passages, items and response options using sign language to student.

Table A-3. 2016-17 MSAA: Accommodation Summary

Content Area	Grade	Number of Students Tested	
		With	Without
ELA	2,232	1,451	
	04	2,387	1,496
	05	2,473	1,468
	06	2,580	1,504
	07	2,498	1,549
	08	2,552	1,740
	11	2,079	1,567
Mathematics	03	2,238	1,465
	04	2,393	1,502
	05	2,483	1,477
	07	2,588	1,513
	08	2,509	1,554
	11	2,548	1,747
	1,984	1,474	

APPENDIX B—PARTICIPATION RATES

Table B-1. 2016-17 MSAA: Summary of Participation by Demographic Category-Mathematics

Description	Tested		Total Tested	Total Percent
	\# Complete	\# No Observable Mode of Communication ${ }^{1}$		
All Students	26,075	1,400	27,475	100.00
Female	5,516	382	5,898	21.47
Male	10,546	593	11,139	40.54
Gender Undefined	10,013	425	10,438	37.99
Hispanic or Latino	4,354	278	4,632	16.86
American Indian or Alaska Native	365	18	383	1.39
Asian	279	21	300	1.09
Black or African American	3,638	216	3,854	14.03
Native Hawaiian or Pacific Islander	160	5	165	0.60
White (non-Hispanic)	9,149	544	9,693	35.28
Two or More Races (non-Hispanic)	489	17	506	1.84
No Primary race/Ethnicity Undefined	7,641	301	7,942	28.91
Currently receiving LEP services	692	35	727	2.65
Not receiving LEP services	12,319	770	13,089	47.64
LEP: All Other Students	13,064	595	13,659	49.71
Economically Disadvantaged Students	6,388	325	6,713	24.43
Non-economically Disadvantaged Students	6,623	480	7,103	25.85
SES: All Other Students	13,064	595	13,659	49.71
Migrant	21	4	25	0.09
Non- migrant	12,853	801	13,654	49.70
Undefined Migrant Status	13,201	595	13,796	50.21
Augmentative Communication	3,855	366	4,221	15.36
No Augmentative Communication	22,060	1,029	23,089	84.04
Undefined Augmentative Communications	160	5	165	0.60
Hearing Loss	664	232	896	3.26
Within Normal Limits	25,308	1,167	26,475	96.36
Undefined Hearing Loss	103	1	104	0.38
Visual Impairment	963	493	1,456	5.30
Within Normal Limits	24,958	903	25,861	94.13
Undefined Visual Impairment	154	4	158	0.58

Description	Tested		Total Tested	Total Percent
	\# Complete	$\begin{aligned} & \text { \# No Observable } \\ & \text { Mode of } \\ & \text { Communication }^{1} \end{aligned}$		
Sensory Stimuli Response	1,650	1,078	2,728	9.93
Follow Directions	24,411	322	24,733	90.02
Undefined Receptive Language	14	0	14	0.05
Special School	2,404	345	2,749	10.01
Regular School Self-contained	17,108	984	18,092	65.85
Regular School Resource Room	3,982	58	4,040	14.70
Regular School Primarily Self-contained	1,873	6	1,879	6.84
Regular School General Education	694	7	701	2.55
Undefined Classroom Setting	14	0	14	0.05
Student Communicates Primarily Through Cries	1,334	1,025	2,359	8.59
Uses Intentional Communication	5,062	293	5,355	19.49
Uses Symbolic Language	19,665	82	19,747	71.87
Undefined Expressive Communication	14	0	14	0.05

[^1]Table B-2. 2016-17 MSAA: Summary of Participation by Demographic Category-ELA

Description	Tested		Total Tested	Total Percent
	\# Complete	$\begin{gathered} \text { \# No Observable } \\ \text { Mode of } \\ \text { Communication }{ }^{1} \end{gathered}$		
All Students	26,171	1,405	27,576	100.00
Female	5,567	385	5,952	21.58
Male	10,623	595	11,218	40.68
Gender Undefined	9,981	425	10,406	37.74
Hispanic or Latino	4,341	278	4,619	16.75
American Indian or Alaska Native	357	18	375	1.36
Asian	282	21	303	1.10
Black or African American	3,702	217	3,919	14.21
Native Hawaiian or Pacific Islander	160	5	165	0.60
White (non-Hispanic)	9,205	548	9,753	35.37
Two or More Races (non-Hispanic)	495	17	512	1.86
No Primary race/Ethnicity Undefined	7,629	301	7,930	28.76
Currently receiving LEP services	692	35	727	2.64
Not receiving LEP services	12,451	775	13,226	47.96
LEP: All Other Students	13,028	595	13,623	49.40
Economically Disadvantaged Students	6,392	328	6,720	24.37
Non-economically Disadvantaged Students	6,751	482	7,233	26.23
SES: All Other Students	13,028	595	13,623	49.40
Migrant	21	4	25	0.09
Non- migrant	12,985	806	13,791	50.01
Undefined Migrant Status	13,165	595	13,760	49.90
Augmentative Communication	3,841	367	4,208	15.26
No Augmentative Communication	22,171	1,033	23,204	84.15
Undefined Augmentative Communications	159	5	164	0.59
Hearing Loss	666	233	899	3.26
Within Normal Limits	25,404	1,171	26,575	96.37
Undefined Hearing Loss	101	1	102	0.37
Visual Impairment	965	494	1,459	5.29
Within Normal Limits	25,054	907	25,961	94.14
Undefined Visual Impairment	152	4	156	0.57

Description	Tested		Total Tested	Total Percent
	\# Complete	```# No Observable Mode of Communication }\mp@subsup{}{}{1```		
Sensory Stimuli Response	1,635	1,083	2,718	9.86
Follow Directions	24,523	322	24,845	90.10
Undefined Receptive Language	13	0	13	0.05
Special School	2,409	347	2,756	9.99
Regular School Self-contained	17,191	987	18,178	65.92
Regular School Resource Room	3,995	58	4,053	14.70
Regular School Primarily Self-contained	1,871	6	1,877	6.81
Regular School General Education	692	7	699	2.53
Undefined Classroom Setting	13	0	13	0.05
Student Communicates Primarily Through Cries	1,310	1,030	2,340	8.49
Uses Intentional Communication	5,051	293	5,344	19.38
Uses Symbolic Language	19,797	82	19,879	72.09
Undefined Expressive Communication	13	0	13	0.05

${ }^{1}$ No Observable Mode of Communication indicates that the students' test was closed because they had no visible means of communication.

Table B-3. 2016-17 MSAA: Participation Rates by Subgroup

Description	Total Tested	Invalidated	Did Not Test
ELA	27,576	192	1,522
Mathematics	27,475	173	1,642

APPENDIX C—TEST BLUEPRINTS

English Language Arts Test Blueprint MSAA

Operational English Language Arts Test Blueprint

The tables presented in this appendix constitute the MSAA operational ELA blueprint targets. The tables incorporate the overall content distributions targeted for the operational test. Each grade level/content area is represented by a table which first describes the content category (e.g., Reading: Literary) standards (CCCs), item types, number of items, number of passages, and reports the approximate overall scoring weights by content category by grade.

Please note that the content of the tables are targets and the eligible items in the bank affect how closely the test is constructed.

Table C1. MSAA Operational Test Blueprint - ELA Grade 3

Content Category	Weight	Core Content Connector	Item Type	\# of Items	$\begin{gathered} \text { \# of } \\ \text { Passages } \end{gathered}$
Reading: Literary	37.5\%	3.RL.h1 Answer questions related to the relationship between characters, setting, events, or conflicts (e.g., characters and events, characters and conflicts, setting and conflicts)	SR	3-4	3-4
		3.RL.i2 Answer literal questions and refer to text to support your answer	SR	4-5	
		3.RL.k2 Determine the central message, lesson, moral, and key details of a text read aloud or information presented in diverse media and formats, including visually, quantitatively, and orally	SR	4-8	
Reading: Informational	43.75\%	3.RI.h1 Identify the purpose of a variety of text features	SR	4-5	1-3
		3.RI.h4 Use illustrations (e.g., maps, photographs, diagrams, timelines) in informational texts to answer questions	SR	2-3	
		3.RI.i2 Determine the main idea of text read or read aloud or information presented in diverse media and formats, including visually, quantitatively, and orally	SR	2-3	
		3.RI.k5 Determine the main idea of a text; recount the key details and explain how they support the main idea	SR	0-3	
Reading: Vocabulary	9.375\%	3.RWL.i2 Use sentence context as a clue to the meaning of a new word, phrase, or multiple meaning word	SR	3-4	0
Reading: Foundational	0\%	3.RWL.h2 Identify grade level words with accuracy	SR	0	0
Writing	9.375\%	3.WI.I4 Sort evidence (e.g., graphic organizer) collected from print and/or digital sources into provided categories	SR	2-3	0
		3.WI.p1 Include text features (e.g., numbers, labels, diagrams, charts, graphics) to enhance clarity and meaning	SR	1-3	
		3.WL.o1With guidance and support from adults, produce a clear, coherent, permanent product that is appropriate to the specific task, purpose (e.g., to entertain), or audience	SR	0	
Total*				32	

*The intended operational score is to be derived from 32 raw score points.

Table C2. MSAA Operational Test Blueprint - ELA Grade 4

Content Category	Weight	Core Content Connector	Item Type	\# of Items	$\begin{gathered} \text { \# of } \\ \text { Passages } \end{gathered}$
Reading: Literary	40.6\%	4.RL.i1 Refer to details and examples in a text when explaining what the text says explicitly	SR	4-6	2-3
		4.RL.k2 Determine the theme of a story, drama, or poem; refer to text to support answer	SR	2-4	
		4.RL.I1 Describe character traits (e.g., actions, deeds, dialogue, description, motivation, interactions); use details from text to support description	SR	0-5	
Reading: Informational	40.6\%	4.RI.h4 Use information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) to answer questions	SR	4-6	3-4
		4.RI.i3 Determine the main idea of an informational text	SR	3-4	
		4.RI.I1 Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears	SR	6-8	
Reading: Vocabulary	9.3\%	4.RWL.i2 Use context as a clue to determine the meaning of unknown words, multiple meaning words, or words showing shades of meaning	SR	2-3	0
		4.RWL.j1 Use general academic and domain specific words and phrases accurately	SR	0	
Reading: Foundational	0\%	4.RWL.h2 Identify grade level words with accuracy and on successive attempts NOT 2PART	SR	0	0
Writing	9.3\%	4.WI.q1 Provide a concluding statement or section to support the information presented	SR	2-3	0
		4.WI.p1 Include formatting (e.g., headings, bulleted information), illustrations, and multimedia when useful to promote understanding	SR	1-3	
		4.WL.o1 Produce a clear, coherent, permanent product that is appropriate to the specific task, purpose (e.g. to entertain), or audience	SR	0	
Total*				32	

*The intended operational score is to be derived from 32 raw score points.

Table C3. MSAA Operational Test Blueprint - ELA Grade 5

Content Category	Weight	Core Content Connector	Item Type	\# of Items	\# of Passages
Reading: Literary	41\%	5.RL.b1 Refer to details and examples in a text when explaining what the text says explicitly	SR	5	3
		5.RL.c2 Summarize a text from beginning to end in a few sentences 3-PART	SR	3-4	
		5.RL.d1 Compare characters, settings, events within a story; provide or identify specific details in the text to support the comparison	SR	4	
Reading: Informational	37.5\%	5.RI.d5 Compare and contrast the overall structure (e.g., chronology, comparison, cause/effect, problem/solution) of events, ideas, concepts, or information in two or more texts	SR	0-1	3
		5.RI.c4 Determine the main idea, and identify key details to support the main idea	SR	5-6	
		5.RI.e2 Explain how an author uses reasons and evidence to support particular points in a text	SR	5-6	
Reading: Vocabulary	13\%	5.RWL.a2 Use context to determine the meaning of unknown or multiple meaning words or phrases	SR	4-5	0
Writing	9\%	5.WI.b3 Organize ideas, concepts, and information (using definition, classification, comparison/contrast, and cause/effect)	SR	2-3	0
		5.WI.d1 Support a topic with relevant facts, definitions, concrete details, quotations, or other information and examples	SR	0	
		5.WL.h1 Produce a clear, coherent, permanent product that is appropriate to the specific task, purpose (e.g. to entertain), or audience	SR	0	
Total*				32	

*The intended operational score is to be derived from 32 raw score points.
Also, note that paired passage sets are used for one of the Informational passages in grades 5-8 and 11 .

Table C4. MSAA Operational Test Blueprint - ELA Grade 6

Content Category	Weight	Core Content Connector	Item Type	\# of Items	\# of Passages
Reading: Literary	41\%	6.RL.b2 Refer to details and examples in a text when explaining what the text says explicitly	SR	0-1	2-3
		6.RL.b3 Use specific details from the text (words, interactions, thoughts, motivations) to support inferences or conclusions about characters including how they change during the course of the story	SR	2-3	
		6.RL.c3* Summarize a text from beginning to end in a few sentences without including personal opinions	SR	6-9	
Reading: Informational	41\%	6.RI.b4 Summarize information gained from a variety of sources including media or texts	SR	2	3-4
		6.RI.c2 Provide a summary of the text distinct from personal opinions or judgments	SR	0	
		6.RI.g4 Determine how key individuals, events, or ideas are elaborated or expanded on in a text	SR	6-8	
		6.RI.g6 Evaluate the claim or argument; determine if it is supported by evidence	SR	5-6	
Reading: Vocabulary	9\%	6.RWL.a1 Use context to determine the meaning of unknown or multiple meaning words or phrases	SR	0	0
		6.RWL.c1 Use general academic and domain specific words and phrases accurately	SR	3-4	
Writing	9\%	6.WL.c1 Organize ideas and event so that they unfold naturally	SR	2-3	0
		6.WL.c3 Use a variety of transition words, phrases, and clauses to convey sequence and signal shifts from one time frame or setting to another	SR	1-3	
		6.WI.h2 Produce a clear, coherent, permanent product that is appropriate to the specific task (e.g., topic), purpose (e.g., to inform), and audience (e.g., reader)	SR	0	
Total*				32	

*The intended operational score is to be derived form 32 raw score points.
Also, note that paired passage sets are used for one of the Informational passages in grades 5-8 and 11

Table C5. MSAA Operational Test Blueprint - ELA Grade 7

Content Category	Weight	Core Content Connector	Item Type	\# of Items	\# of Passages
Reading: Literary	38\%	7.RL.i2 Use two or more pieces of textual evidence to support inferences, conclusions, or summaries of text	SR	9-10	3
		7.RL.j1 Analyze the development of the theme or central idea over the course of the text	SR	3-4	
Reading: Informational	44\%	7.RI.j1 Use two or more pieces of evidence to support inferences, conclusions, or summaries of text	SR	4-5	2-3
		7.RI.j5 Analyze the interactions between individuals, events, and ideas in a text (e.g., how ideas influence individuals or events, or how individuals influence ideas or events)	SR	2-3	
		7.RI.I1Compare/contrast how two or more authors write about the same topic	SR	4	
		7.RI.k4 Evaluate the claim or argument to determine if they are supported by evidence	SR	1-2	
Reading: Vocabulary	9\%	7.RWL.g1 Use context as a clue to determine the meaning of a grade appropriate word or phrase	SR	3	0
Writing	9\%	7.WL.o1 Select or provide a concluding statement or paragraph that follows from the narrated experiences or events.	SR	0	0
		7.WL.II Use precise words and phrases, relevant descriptive details, and sensory language to capture the action and convey experiences and events	SR	2-3	
		7.WI.o1 Produce a clear, coherent, permanent product (e.g. select/generate responses to form paragraph/essay) that is appropriate to the specific task (e.g., topic), purpose (e.g., to inform), and audience (reader)	SR	1-3	
Total*				32	

*The intended operational score is to be derived from 32 raw score points.
Also, note that paired passage sets are used for one of the Informational passages in grades 5-8 and 11 .

Table C6. MSAA Operational Test Blueprint - ELA Grade 8

Content Category	Weight	Core Content Connector	Item Type	\# of Items	$\begin{gathered} \text { \# of } \\ \text { Passages } \end{gathered}$
Reading: Literary	34\%	8.RL.i2 Use two or more pieces of evidence to support inferences, conclusions, or summaries of text	SR	4-8	2-3
		8.RL.j2 Analyze the development of the theme or central idea over the course of the text including its relationship to the characters, setting, and plot	SR	2-3	
Reading: Informational	44\%	8.RI.j1 Use two or more pieces of evidence to support inferences, conclusions, or summaries of text	SR	5-8	3-4
		8.RI.I1 Analyze a case in which two or more texts provide conflicting information on the same topic and identify where the texts disagree on matters of fact or interpretation	SR	2-4	
		8.RI.k2 Determine how the information in each section contribute to the whole or to the development of ideas	SR	3-4	
		8.RI.k4 Identify an argument or claim that the author makes	SR	3-4	
Reading: Vocabulary	13\%	8.RWL.g1 Use context as a clue to the meaning of a grade-appropriate word or phrase	SR	2-3	0
		8.RWL.i1 Use general academic and domain specific words and phrases accurately	SR	0-1	
Writing	9\%	8.WP.k2 Create an organizational structure in which ideas are logically grouped to support the writer's claim	SR	2-3	0
		8.WP.j1 Gather relevant information (e.g., highlight in text, quote or paraphrase from text or discussion) from print and/or digital sources	SR	1-3	
		8.WI.o1 Produce a clear, coherent, permanent product (e.g. select/generate responses to form paragraph/essay) that is appropriate to the specific task (e.g., topic), purpose (e.g., to inform), and audience (e.g., reader)	SR	0	
Total*				32	

*The intended operational score is to be derived from 32 raw score points.
Also, note that paired passage sets are used for one of the Informational passages in grades 5-8 and 11 .

Table C7. MSAA Operational Test Blueprint - ELA Grade 11

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items	$\begin{gathered} \text { \# of } \\ \text { Passages } \end{gathered}$
Reading: Literary	38\%	1112.RL.b1Use two or more pieces of evidence to support inferences, conclusions, or summaries of the plot, purpose, or theme within a text	SR	4-6	2-3
		1112.RL.d1 Analyze how an author's choices concerning how to structure specific parts of a text (e.g., the choice of where to begin or end a story, the choice to provide a comedic or tragic resolution) contribute to its overall structure and meaning	SR	4-6	
Reading: Informational	41-44\%	1112.RI.b1 Use two or more pieces of evidence to support inferences, conclusions, or summaries or text	SR	5-8	3-4
		1112.RI.b5 Determine how key details support the development of the central idea of a text	SR	4-6	
		1112.RI.d1 Determine the author's point of view or purpose in a text	SR	3-4	
		1112.RI.e1 Integrate and evaluate multiple sources of information presented in different media or formats (e.g., visually, quantitatively) as well as in words in order to address a question or solve a problem	SR	0-1	
Reading: Vocabulary	9-13\%	1112.RWL.b1 Use context (e.g., the overall meaning of a sentence, paragraph, or text; a word's position in a sentence) as a clue to the meaning of a word or phrase	SR	2	0
		1112.RWL.c3 Develop and explain ideas for why authors made specific word choices within text	SR	0-2	
Writing	9\%	1112.WI.b2 Create an organizational structure for writing that groups information logically (e.g., cause/effect, compare/contrast, descriptions and examples) to support paragraph focus	SR	2-3	0
		1112.WI.b4 Select the facts, extended definitions, concrete details, quotations, or other information and examples that are most relevant to the focus and appropriate for the audience	SR	1-3	
		1112.WP.f1 Produce a clear, coherent, permanent product that is appropriate to the specific task, purpose (to persuade), and audience	SR	0	
Total*				32	

*The intended operational score is to be derived from 32 raw score points.
Also, note that paired passage sets are used for one of the Informational passages in grades 5-8 and 11 .

The ELA chart below specifies where the Operational passage sets, operational writing items, and field test slots will be in the sessions.

Session One (Tiers 1, 2, 3) OP Points $=15$ FT Points $=9$	Session Two A (Tiers 1, 2, 3) 17 OP Points Three Reading passage sets T1-T3 Writing Standalones	Session Two B (Tiers 2 \&3) 17 OP Points Three Reading passage sets T1-T3 Writing Standalones	Session Two C (Tiers 2,3, 4) 17 OP Points Three Reading passage sets T2-T4 Writing Standalones	Session Three FT ONLY (Tiers 2 and 3 Writing Prompt)
Passage set \#1	Passage set \# 6 (T1)	Passage set \# 7 (T2 OR T3)	Passage set \# 8 (T4)	FT Writing Prompt 2 (T2)
Passage set \#2	Passage set \#4 (T2)	Passage set \#4 (T2)	Passage set \#4 (T2)	
Passage set \#3	Passage set \#5 (T3)	Passage set \#5 (T3)	Passage set \#5 (T3)	
FT Positions 16-24 = FT passage set plus standalone writing items	3 Writing standalones (T1, T2, T3)	3 Writing standalones (T1, T2, T3)	3 Writing Standalones $\text { (} \mathrm{T} 2, \mathrm{~T} 3, \mathrm{~T} 4)$	
Passage set \#1	same as above	same as above	same as above	FT Writing Prompt 2 (T2) same prompt as above
Passage set \#2				
Passage set \#3				
FT Positions 16-24 = FT passage set plus standalone writing items				
Passage set \#1	same as above	same as above	same as above	FT Writing Prompt 3 (T3)
Passage set \#2				
Passage set \#3				
FT Positions 16-24 = FT passage set plus standalone writing items				

* Field test slots are color-coded peach, orange, and green.
** Identical items in Session 2 A, B, and C are shown in yellow and blue.

Mathematics Blueprint MSAA Operational

Mathematics Test Blueprint

The tables presented in this appendix constitute the MSAA operational mathematics blueprint targets. The tables incorporate the overall content distributions targeted for the operational test. Each grade level/content area is represented by a table, which first describes the content category (e.g., Number and Operations Base 10), weights per CCC, standards (CCCs), item types, number of items, and reports the approximate overall scoring weights by content category by grade.

Please note that the content of the tables are targets and the eligible items in the bank affect how closely the test is constructed.

Table C8. MSAA Operational Test Blueprint - Mathematics Grade 3

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items
Operations and Algebraic Thinking	29-31\%	3.NO.2d3 Solve multiplication problems with neither number greater than 5	SR	10-11
		3.NO.2e1* Solve or solve and check one- or two-step word problems requiring addition, subtraction, or multiplication with answers up to 100		
		3.PRF.2d1 Identify multiplication patterns in a real word setting		
Number and Operations Base Ten	20\%	3.NO.1j3 Use place value to round to the nearest 10 or 100	SR	7
		3.NO.2c1 Solve multi-step addition and subtraction problems up to 100		
Number and Operations Fractions	20\%	3.NO.113 Identify the fraction that matches the representation (rectangles and circles; halves, fourths, thirds, and eighths)	SR	7
		3.SE.1g1 Use $=,<$, or $>$ to compare 2 fractions with the same numerator or denominator		
Measurement and Data	20\%	3.DPS.1g1 Collect data; organize into picture or bar graph	SR/CR	7
		3.ME.1d2 Measure area of rectilinear figures by counting squares		
Geometry	9-11\%	3.GM.1i1 Partition rectangles into equal parts with equal area	SR	3-4
Total**				35

* This CCC requires a pair of math item versions.
**The intended operational score is to be derived from 35 raw score points.

Table C9. MSAA Operational Test Blueprint - Mathematics Grade 4

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items
Operations and Algebraic Thinking	29-31\%	4.NO.2d7 Determine how many objects go into each group when given the total number of objects and groups where the number in each group or number of groups is	SR	10-11
		4.PRF.1e3 Solve multiplicative comparisons with an unknown using up to 2-digit numbers with information presented in a graph or word problem (e.g., an orange hat cost $\$ 3$. A purple hat cost 2 times as much. How much does the purple hat cost? [$3 \times 2=\mathrm{p}$])		
		4.NO.2e2* Solve or solve and check one or two step word problems requiring addition, subtraction, or multiplication with answers up to 100		
Number and Operations Base Ten	9-11\%	4.NO.1j5 Use place value to round to any place (i.e., ones, tens, hundreds, thousands)	SR	3-4
Number and Operations Fractions	29-31\%	4.NO.1m1 Determine equivalent fractions	SR	10-11
		4.NO.1n2 Compare up to 2 given fractions that have different denominators		
		4.SE. 1 g 2 Use $=$, , , or $>$ to compare 2 fractions (fractions with a denominator or 10 or less)		
Measurement and Data	20\%	4.ME.1g2 Solve word problems using perimeter and area where changes occur to the dimensions of a rectilinear	SR/CR	7
		4.DPS.1g3 Collect data; organize in graph (e.g. picture graph, line plot, bar graph)		
Geometry	9-11\%	4.GM.1h2 Classify two-dimensional shapes based on attributes (\# of angles)	SR/CR	3-4
Total**				35

* This CCC requires a pair of math item versions.
**The intended operational score is to be derived from 35 raw score points.

Table C10. MSAA Operational Test Blueprint - Mathematics Grade 5

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items
Operations and Algebraic Thinking	9-11\%	5.PRF.2b1 Generate or select a comparison between two graphs from a similar situation	SR	3-4
Number and Operations Base Ten	40\%	5.NO.1b1 Read, write, or select a decimal to the hundredths place	SR	14
		5.NO.1b4 Round decimals to the next whole number		
		5.NO.2c1 Solve one-step problems using decimals		
		5.NO.2a5 Solve word problems that require multiplication or division		
Number and Operations Fractions	20\%	5.NO.2c2 Solve word problems involving the addition, subtraction, multiplication, or division of fractions	SR	7
		5.PRF.1a1 Determine whether the product will increase or decrease based on the multiplier		
Measurement and Data	20\%	5.ME.1b2 Convert standard measurements of length	SR	7
		5.ME.2a1 Use a calculator to solve one-step problems involving conversions of standard measurement units of area, volume, time, mass in the same system		
Geometry	9-11\%	5.GM.1c3 Use order pairs to graph given points	SR/CR	3-4
Total*				35

*The intended operational score is to be derived from 35 raw score points.

Table C11. MSAA Operational Test Blueprint - Mathematics Grade 6

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items
Ratio and Proportions	$29-31 \%$	6.PRF.1c1 Describe the ratio relationship between two quantities for a given situation	6.ME.2a2 Solve one-step real world measurement problems involving unit rates with ratios of whole numbers when given the unit rate (3 inches of snow falls per hour, how much in 6 hours?)	SR

* This CCC requires a pair of math item versions.
**The intended operational score is to be derived from 35 raw score points.

Table C12. MSAA Operational Test Blueprint - Mathematics Grade 7

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items
Ratio and Proportions	40\%	7.NO.2f1 Identify the proportional relationship between two quantities (use rules or symbols to show quantitative relationships)	SR	14
		7.NO.2f2 Determine if two quantities are in a proportional relationship using a table of equivalent ratios or points graphed on a coordinate plane		
		7.NO.2f6 Solve word problems involving ratios		
		7.PRF.1f1 Use proportional relationships to solve multistep percent problems in real world situations.		
Expressions and Equations	9-11\%	7.PRF.1g2 Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities	SR	3-4
The Number System	20\%	7.NO.2i1 Solve multiplication problems with positive/negative numbers	SR	7
		7.NO.2i2 Solve division problems with positive/negative numbers		
Statistics and Probability	9-11\%	7.DPS.1k1 Analyze graphs to determine or select appropriate comparative inferences about two samples or populations	SR	3-4
Geometry	20\%	7.ME.2d1 Apply formula to measure area and circumference of circles	SR	7
		7.GM.1h2 Find the surface area of three-dimensional figures using nets of rectangles or triangles		
Total*				35

*The intended operational score is to be derived from 35 raw score points.

Table C13. MSAA Operational Test Blueprint - Mathematics Grade 8

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items
Functions	20\%	8.PRF.2e2* Identify the rate of change (slope) and initial value (y-intercept) from graphs	SR	7
		8.PRF.1f2 Describe or select the relationship between the two quantities given a line graph of a situation		
Expressions and Equations	20\%	8.PRF.1e2 Represent proportional relationships on a line graph	SR	7
		8.PRF.1g3 Solve linear equations with 1 variable		
The Number System	9-11\%	8.NO.1k3 Use approximations of irrational numbers to locate them on a number line	SR	3-4
Statistics and Probability	20\%	8.DPS.1h1* Graph bivariate data using scatter plots and identify possible associations between the variables	SR/CR	7
		8.DPS.1k2 Analyze displays of bivariate data to develop or select appropriate claims about those data		
Geometry	29-31\%	8.ME.1e1 Describe the changes in surface area, area, and volume when the figure is changed in some way (e.g., scale drawings)	SR	10-11
		8.GM.1g1* Recognize congruent and similar figures		
		8.ME.2d2 Apply the formula to find the volume of 3dimensional shapes (i.e., cubes, spheres, and cylinders)		
Total**				35

* This CCC requires a pair of math item versions.
**The intended operational score is to be derived from 35 raw score points.

Table C14. MSAA Operational Test Blueprint - Mathematics Grade 11

Content Category	Actual Weight	Core Content Connector	Item Type	\# of Items
Algebra And Functions	49-51\%	H.PRF.2b1 Translate a real-world problem into a one-variable linear equation	SR	17-18
		H.PRF.2b2 Solve equations with one or two variables using equations or graphs		
		H.ME.1b2 Solve a linear equation to find a missing attribute given the area, surface area, or volume and the other attribute		
		H.PRF.1c1 Select the appropriate graphical representation of a linear model based on real world events		
		H.PRF.2c1 Make predictions based on a given model (for example, a weather model, data for athletes over years)		
Number and Quantity	20\%	H.ME.1a2 Solve real world problems involving units of measurement	SR	7
		H.NO.1a1 Simplify expressions that include exponents		
Statistics and Probability	20\%	H.DPS.1b1 Complete a graph given the data, using dot plots, histograms, or box plots	SR/CR	7
		H.DPS.1c1 Use descriptive stats, range, median, mode, mean, outliers/gaps, to describe data set		
Geometry	9-11\%	H.GM.1b1 Use definitions to demonstrate congruency and similarity in figures	SR	3-4
Total*				35

*The intended operational score is to be derived from 35 raw score points.

Table C15. MSAA Operational Test Blueprint - Mathematics Distribution

Guidelines for MSAA Mathematics Tier Distribution

Stage	Tier 1	Tier 2	Tier 3	Tier 4
1	5	5	5	0
2A	5	10^{*}	5	0
2B	0	10^{*}	10^{*}	0
2C	0	5	10^{*}	5

*These 10 items are identical

Guidelines for MSAA Mathematics CR items

(Number of items)

Grade	3	4	5	6	7	8	11
Number of CR items	$1-2$	$2-4$	$2-3$	0	0	$1-2$	$1-2$

Field Test Positions: 4, 5, 9, 10, 14, 15, 19, 20, 24, 25

APPENDIX D-ITEM REVIEW AND BIAS AND SENSITIVITY REVIEW COMMITTEE MEMBERS

ELA Content Grades 3-6	
Name	State
Robin Dunlap	AR
Marcia Karls	AZ
Valerie Guerrero	PAC6
Genevive Goodman	MD
Caitlin Jones	MD
Joellen Merry	ME
Abigail Trask	ME
Kayla Bucciarelli	MD
Heather Hinners	SD
Rachael Rhinehart	TN

ELA Content Grades 7,8,11

Name	State
Shelley Bohy	SD
Pam Lang	RI
Lori Cole	AR
Christy Callahan	ME
Bess Cropper	MD
Kerri Bocker	TN
Rhonda Gross	PAC6
Sandra Laine	AZ
Kelli Gordon	AR
Dr. Renee Charleswell	USVI

ELA Bias All Grades	
Name	State
Don Breedwell	TN
Paula VanBiervliet	AR
Carolyn Norful	AR
Pam Kelk	AZ
Tracy Del Rosario	PAC6
Joe Benamati	MD
Johanna Connell	ME
Meredith Verrill	ME
Leslie Brow	RI

Math Content 3-6

Name	State
Melanie Home Gun	MT
Mark Dennett	ME
Sara Kempler	MD
Jodi Barber	ME
Helene Cruz	PAC6
Lisa C. Oliver	AZ
Catherine Acosta	AR
Sheryl Serano Griffith	USVI
Krista Bolen	TN

Math Content 7,8,11
Name StateRI
Erin Stabnow SD
Cecilia Dumlao TN
Melissa Hardman MT
Timothy Billings AR
Tracy Fazio AZ
Lizabeth Hofschneider PAC6
Sarah Stare MD
Carissa Hollinger MD
Sandra Cookson ME
Becky Whitlock SD

Math Bias All Grades	
Name	State
Windy Phillips	MD
Tara Ann Turbanada-Umlas	USVI
Elmie Manley	PAC6
Alexis Dion	AZ
Herbert Bautista	USVI
Alison Wilhelm	TN
Maureen Fox	ME
Jennifer Brown	AR
Angela Bell	MD

APPENDIX E—DECISION RULES

Multi-State Alternate Assessment (MSAA) Spring 2017 Analysis and Reporting Decision Rules

Multi-State Alternate Assessment (MSAA) Spring 2017 i
Analysis and Reporting Decision Rules i
Multi-State Alternate Assessment (MSAA) Spring 2017. 1
I. Contract Overview 1
A. Test Administration(s)1
B. Deliverables 1
II. Data Sources 1
A. Student Demographic Cleanup.1
B. Student Test Cleanup 2
C. Student Build Outs 2
D. Organization Cleanup. 3
E. Scoring 3
III. Student Participation and Reporting Status 4
A. Overview 4
B. Participation Status Assignment Hierarchy (by subject: Math, ELA) 4
C. Participation Status Summary 5
IV. Calculations 6
A. Raw Score 6
B. Writing Trait Raw Scores 6
C. Scaling and Equating 6
D. Performance Levels and Cut Scores. 6
E. Aggregate Calculations 6
V. Data and Reporting Deliverable Requirements 7
A. General (all deliverables) 7
B. Student Report Specifics 8
C. School Roster Report Specifics 10
D. Summary Report Specifics 13
E. Student Results Data File Specifics 12
F. State Duplicate / Void Data File 13
G. Early Release Data File 13

Multi-State Alternate Assessment (MSAA) Spring 2017

This document details rules for analysis and reporting of the Multi-State Alternate Assessment (MSAA). This document is considered a draft until sign off has been granted. If there are rules that need to be added or modified after said sign-off, subsequent sign off will be obtained for each rule.

I. Contract Overview

A. Test Administration(s)

1. Eligible students are expected to test in Math and ELA in grades 03-08 and 11.
2. ELA includes reading and writing; in 16-17 scores for the writing prompt do not contribute to the overall ELA score and are not reported.
3. Tests have moved to a Staged Adaptive design for 16-17. The raw score from core items in Session 1 determines what version of Session 2 is presented.

B. Deliverables

1. Student Report: online with print options below
a. State Option - Print Copies (Parent): AR, TN
b. State Option - Print Copies (Parent \& School): MD, RI
2. Roster Report (School): online
3. Summary Report (School, District, State): online
4. Student Results Data File (School, District, State): online
5. Duplicate/Void Test Data (State): online
6. State Option - Early Release Data File (State): SD

II. Data Sources

A. Student Demographic Cleanup

1. For the purpose of performing demographic cleanup, including identification of the final set of students to be reported via the MSAA, states are provided the complete list of all students registered in TAO (except those moved to the Do Not Process school: "0000-000"), regardless of test status or completion status.
2. The demographic cleanup process enables states to:
a. Identify and resolve instances of duplicate or erroneous registration records. States may indicate records to "merge" in order to resolve duplicates, "remove", or add, as necessary.
b. Update and add up-to-date demographic data.
c. Update the school and district a student should be at for reporting and aggregations.
d. Provide state-supplied test status information, such as exemptions and invalidations.
e. Confirm or update the grade level expected for testing for each student. The grade level returned by states is the grade level the student is expected to be reported in.
3. See the Demographic Clean up Instructions document for additional details.

B. Student Test Cleanup

1. All tests associated with a final student (demographic row of record), including tests from student records merged during the demographic cleanup process, will be compiled for the test cleanup process.
2. The test cleanup process will independently determine the final Math test and the final ELA test to be used for analysis and reporting for each student. These tests are considered the Analysis and Reporting Dataset. All other tests are considered Duplicate/Void tests and are provided to states separately for informational purposes only.
3. Off-Grade Tests:
a. If a student's expected grade level for testing from the demographic file does not match the test grade the test is "off-grade".
b. Off-grade tests are classified as Duplicate/Void and are excluded from the Analysis and Reporting Dataset prior to completion of additional test cleanup steps.
c. Measured Progress will create a discrepancy alert for states of any case(s) where the tests associated with a student are off-grade. For these cases, the state may:
i. Leave the data as-is.

- The off-grade test will be considered Duplicate/Void.
- The student will be included in the Analysis and Reporting dataset without a test, see C. Student Build Outs.
ii. Update the student's expected grade level for testing to match the test grade, if appropriate.
- The test will be considered on-grade and processed per normal rules at the test grade level.
iii. In either case above the state may also provide Measured Progress with an updated state-supplied status code for the student if they determine one is applicable for reporting while reviewing the scenario.

4. Duplicate/Multiple Test Reconciliation
a. After off-grade tests have been resolved, if a student still has more than one associated test for the same subject, the final test for Analysis and Reporting is determined using the following hierarchy:
i. Submitted/Completed Test
ii. Closed - Early Stopping Rule Applied
iii. In Progress
b. If two or more tests have the same status above the test associated with the last (latest) date-time stamp will be used.
5. States should provide Measured Progress with all unique test-clean up scenarios that need to be handled outside of the process defined above. This "Bull Pen" file will be handled manually to ensure the correct test, as identified by the state, is used for analysis and reporting.

C. Student Build Outs

Student demographic rows of record from the state that do not have an on-grade test for one or both subjects are included in the Analysis and Reporting dataset with no test data.

D. Organization Cleanup

1. The schools and districts returned by states for each demographic row of record in the demographic cleanup file are considered the final school and district codes to be used for analysis and reporting, regardless of where a student's test was taken.
2. Measured Progress will work with states to identify the complete set of these school and district organizations, along with organization names for reporting, during the demographic file acceptance and organization cleanup process with each state.
3. The complete set of organizations in the Analysis and Reporting dataset will be loaded in Breakthrough's reporting platform to enable access to the reports. States may restrict access through control of the user-accounts associated with each organization.
E. Scoring
4. The Tier 2 (or above) writing prompt is scored by Measured Progress resulting in a final score or score-condition code for each of the three traits:
a. Traits:
i. Organization
ii. Idea Development
iii. Conventions
b. Writing prompt scores are field-test in 16-17 and not included in the overall ELA score.
c. Valid Scores for each trait:

Original Score / Code	Description	Reported Value (Not Applicable in 16-17)	Translated Score Value
0, 1-3	Final Score	0, 1-3	$0=$ No Evidence of Trait 1 = Limited Evidence 2 = Partial Evidence 3 = Full Evidence
B	Blank Prompt	0	$B=$ No Evidence Submitted
U	Unreadable	0	U = Unreadable
F	Foreign Language	0	F = Foreign Language
P	Copy of Prompt	0	P = Copy of Prompt
N	No Score	0	$\mathrm{N}=$ No Score
5	Off-Topic	0	O = Off Topic
6	Section is Blank	0	$B=$ Section is Blank

2. All other item scores are taken from the Breakthrough testing system. Non-responses (blank responses) to any item are scored as 0 points.

III. Student Participation and Reporting Status

A. Overview

1. Participation statuses are assigned independently for Math and ELA for each student in the final Analysis and Reporting dataset using state-supplied test status information in conjunction with test submission and closure data, per the hierarchy below (Section B).

B. Participation Status Assignment Hierarchy (by subject: Math, ELA)

1. If the state has supplied a test status code for the subject then the Participation Status is the state provided code:
a. Administration Irregularity
e. Exempt
b. Invalidated
f. Withdrew
c. Parental Refusal
g. No Longer Eligible
d. ELL Exempt (ELA tests only)
2. Otherwise, if the test is Submitted then the Participation Status is Tested, regardless of the number of item responses.
3. Otherwise, if the test is Closed - No Observable Communication Mode:
a. And no item responses are recorded then the Participation Status is Early Stopping Rule Applied.
b. And has one or more item responses recorded then the Participation Status is Early Stopping Rule Misadministration.
4. Otherwise, if the test is In Progress:
a. And has no item responses recorded then the Participation Status is Did Not Test.
b. And has one or more item responses recorded then the Participation Status is Tested Incomplete.
5. Otherwise the Participation Status is Did Not Test.
6. Duplicate/Void tests, including off-grade tests, are not assigned participation statuses and are excluded from the Analysis and Reporting dataset.
progress
C. Participation Status Summary

Participation Status	Description	Abbrev.	MP Code	State Data File (All Scores ${ }^{1}$)	School, District Data Files:		In Agg. Calcs
					Scaled Score	Perf. Level	
Tested	Tested	TES	A	Yes	Yes	Yes	Yes
Early Stopping Rule	Closed - No Observable Communication Mode, no responses.	ESR	B	Yes	Yes	Yes	Yes
Early Stopping Rule Misadministration	Closed - No Observable Communication Mode with at least 1 response.	ESM	C	Yes	Yes	No	No
Incomplete	In Progress with at least 1 response.	INC	D	Yes	Yes	No	No
* Administration Irregularity	Administration Irregularity was reported but the does not necessitate an invalidation. Scores should be interpreted with caution.	IRR	E	Yes	Yes	Yes	Yes
* Invalidated	Student-based or administrationbased irregularity resulting in invalidation.	INV	F	Yes	No	No	No
* Parental Refusal	Parental Refusal	PRF	G	No	No	No	No
* ELL Exempt (ELA Only)	Student meets the requirements for ELL $1^{\text {st }}$ Year in the U.S. exemption from ELA.	ELL	H	No	No	No	No
* Exempt (Emergency, Medical, Other)	Student meets the requirements for exemption from the test.	EXE	1	No	No	No	No
* Withdrew	Student withdrew	WDR	K	No	No	No	No
* No Longer Eligible	Student is no longer eligible for testing.	NLE	L	No	No	No	No
Did Not Test	No test or an In Progress test with no responses.	DNT	J	No	No	No	No
Void/Duplicate	Test is a Duplicate or Void; excluded from Analysis and Reporting Dataset.	N/A	M	Separate	from S scored)	dent Resur ta only.	; raw
REMOVE	Student demographic record marked by state as REMOVE	These students and all associated tests are excluded from the analysis and reporting dataset entirely and are not provided to the state.					

[^2]
IV. Calculations

A. Raw Score

1. Overall raw scores are calculated based on scores to items that are classified as "core" items for the test form. All other item response scores are excluded.
2. The "core" item list was determined in collaboration with the states.
a. For 16-17 the writing prompt is not eligible to be included as a "core" item.

B. Writing Trait Raw Scores

1. For 16-17, student level writing trait scores are not included in reporting, and an overall writing score is not calculated or reported.
2. Measured Progress will work closely with states during and after scoring to provide feedback on the writing prompt results to inform item selection and for instructional purposes. This feedback will be defined outside the scope of this document.

C. Scaling and Equating

1. Psychometrics provides the raw score to scaled score lookup for each grade and subject and adaptive version of the test.
D. Performance Levels and Cut Scores
2. The following performance levels are used for MSAA Reporting:

Level	Title
1 (lowest)	Level 1
2	Level 2
3	Level 3
4 (highest)	Level 4

2. MSAA cut scores for each performance level were generated during NCSC 2015 standard setting.

E. Aggregate Calculations

1. Eligible Students:
a. For school, district, and state level aggregate calculations all students are eligible to be included based on their participation status.
b. For MSAA level aggregate calculations (technical report, item statistics) all students are eligible to be included based on their participation status.
2. Participation Counts:
a. All eligible students are included in participation summaries based on participation status for the subject if their participation status is reported.
b. Classification of participation statuses into reported groupings (i.e.: "the number of Tested students") is documented for each individual report deliverable as necessary.
3. Results Aggregations:
a. Results-based aggregations include, but are not limited to:
i. Min, Max, Average Raw Score and SEM
ii. Min, Max, Average Scaled Score and SEM
iii. Number and percent of students by performance level
b. Eligible students with the following participation statuses are included in results-based aggregate calculations for reporting:
i. Tested
ii. Early Stopping Rule
iii. Administration Irregularity
c. Only eligible students with a participation status of Tested (A) are included in item statistic calculations for the technical report.
d. New for 16-17, aggregations with less than 10 students included in the denominator will be suppressed from state level reports only.

V. Data and Reporting Deliverable Requirements

A. General (all deliverables)

1. Only tests included in the Analysis and Reporting Dataset are eligible for final reporting.
a. Duplicate/Void tests, although not reported, are provided to States in the State Duplicate/Void data file hand off, which will include off-grade tests.
2. Students classified as "Withdrew" or "No Longer Enrolled" for both ELA and Math are excluded from the Roster Report, Student Report, and Summary Report entirely. They are included in the Student Results data files still.
3. Final reports and data files are generated by Measured Progress for all organizations with reported students in the Analysis and Reporting dataset, as applicable for their organization level.
4. Access to reports for specific schools or districts can be restricted via management of the log-in credentials through the Breakthrough system.
5. All school and district level reports are marked "Confidential" on all pages.
6. N -size suppression is done on state level reports only. Any aggregations with less than 10 students included are suppressed from the state level reports.

B. Student Report Specifics

1. Each student report consists of a 1-page cover letter followed by 1-page with results for ELA and Math. Both pages are marked "Confidential".
2. Student reports are generated for all students in the Analysis and Reporting dataset earning a performance level in at least one content are:
a. Tested (A)
b. Early Stopping Rule (B)
c. Administration Irregularity (E).
3. Since both content areas are always displayed, alternate text is provided for each status that does not receive a student report in the event that a student receives a report for the other content area, see the Participation Status Summary - Student Report table below.
4. For all statuses that have scaled scores but are not receiving a reported Performance Level [Early Stopping Rule Misadministration (C), Tested-Incomplete (D), and Invalid (F)], the school and district will have access to the earned scaled score in the student results data file. Since these statuses do not earn a performance level they do not receive student reports.
5. For statuses receiving a report:
a. The scaled score and performance level earned are printed at the top.
b. The sentence explaining the standard error of measurement associated with the student's scaled score is displayed.
c. The performance level description associated with the earned performance level is printed below the graph.
d. For students classified as Early Stopping Rule (ESR):
i. An asterisk $\left({ }^{*}\right)$ is added to the earned performance level at the top: Level 1*
ii. The asterisk corresponds to the alternate text to be displayed below the bar graph - see Participation Status Summary Table: Alternate Text.
iii. The PLD text for Level 1 is not shown.
6. For statuses that do not receive a report but must appear because the other content area is reported:
a. The sentences for "Your child's scaled score" and "Your child's performance level" are not shown.
b. The graph is replaced with alternate text directing parents to contact their school or teacher, see the Participation Status Summary Table: Alternate Text.
7. States electing to receive printed student reports will receive report packages packed by school and shipped to the district. If a state is receiving parent and school copies, two identical packages per school are created and shipped.
8. Participation Status Summary - Full List Available to States - Student Report:

Participation Status	Abbrev.	MP Code	Student Report Specifics		
			Scaled Score	Perf Level	Alternate Text
Tested	TES	A	Yes	Yes	
Early Stopping Rule	ESR	B	Yes (lowest)	Yes (Level 1) PLD 1 Text is NOT Shown.	Your child did not show a consistent observable mode of communication during the test and the test was closed by the teacher. Since your child did not complete the test the results may not be an accurate representation of your child's skills. If you have additional questions, please contact your child's teacher.
Early Stopping Rule Misadministration	ESM	C	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
Tested - Incomplete	INC	D	No Student Report		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
Administration Irregularity	IRR	E	Yes	Yes	
Invalidated	INV	F	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
Parental Refusal	PRF	G	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
ELL Exempt (ELA Only)	ELL	H	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
Exempt (Emergency, Medical, Other)	EXE	1	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
Did Not Test	DNT	J	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
Withdrew	WDR	K	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.
No Longer Eligible	NLE	L	No Student Report.		Your child did not receive a score in this content area. Please contact your child's teacher/school for more information.

C. School Roster Report Specifics

1. Rosters are generated for each school in the Analysis and Reporting dataset and will list all students, regardless of participation status, except:
a. Student's classified as "Withdrew" or "No Longer Enrolled" for both ELA and Math.
2. Comparison to State
a. The state average scaled score is calculated using the earned scaled score for all students included in aggregations calculations: Tested (A), Early Stopping Rule (B), and Administration Irregularity (E).
b. The standard error of measurement (SEM) associated with the student's obtained score is used to identify the range around the state average scaled score to classify the student as above, similar to, or below the state average:

Classification	Performance	Display
Student Score $<($ State Average - Student SEM $)$	Lower than the state average	-
State Average - Student SEM $)<=$		
Student Score	Similar to the state average	$=$
$<=($ State Average + Student SEM $)$		+
Student Score $>($ State Average + Student SEM $)$	Above the state average	+

3. For Test Status print the "Test Status" column from the Participation Status Summary - Roster Report table.
4. For participation statuses that do not receive a state comparison, scaled score, or performance level (listed as "No" in the Participation Status Summary Table) these fields appear blank on the roster.
5. School Summary Table on the Roster:
a. School, District, and State Summary data are displayed at the top of the report. Since reports are marked "confidential" there is no suppression rules applied.
b. The number Enrolled is equal to the total number of students listed on the roster. This includes all students in the Reporting and Analysis dataset except those that are "Withdrew" or "No Longer Eligible" in both Math and ELA and are therefore not listed on the roster.
c. The number Tested is equal to the set of students receiving a reported performance level: Tested (A), Early Stopping Rule (B), and Administration Irregularity (E).
6. The Average Scaled Score and Percent of Students by Performance level calculations are based on the number of Tested students.
7. Participation Status Summary - Full List Available to States - Roster Report:

Participation Status	Abbrev.	MP Code	Roster Report Specifics:			
			Display Test Status	State Compare	Scaled Score	PerfLevel
Tested	TES	A		Yes	Yes	Yes
Early Stopping Rule	ESR	B	ESR	Yes	Yes	Yes (Level 1)
Early Stopping Rule Misadministration	ESM	C	MIS	Yes	Yes	No
Tested - Incomplete	INC	D	INC	Yes	Yes	No
Administration Irregularity	IRR	E	IRR	Yes	Yes	Yes
Invalidated	INV	F	INV	No	No	No
Parental Refusal	PRF	G	PRF	No	No	No
ELL Exempt (ELA Only)	ELL	H	ELL	No	No	No
Exempt (Emergency, Medical, Other)	EXE	1	EXE	No	No	No
Did Not Test	DNT	J	DNT	No	No	No
Withdrew	WDR	K	WDR	Not Included on Roster Reports. If appearing for 1 content area, then State Compare, Scaled Score, and PerfLevel are blank,		
No Longer Eligible	NLE	L	NLE			

D. Summary Report Specifics

1. Summary Reports are generated for each school, district, and state in the Analysis and Reporting dataset with at least one student who is not classified as "Withdrew" or "No Longer Enrolled" in both ELA and Math.
2. The number Enrolled is equal to the total number of students listed on the roster. This includes all students in the Reporting and Analysis dataset except those that are "Withdrew" or "No Longer Eligible" in $\underline{\text { both }}$ Math and ELA (same as Roster).
3. The number Tested is equal to the set of students receiving a reported performance level: Tested (A), Early Stopping Rule (B), and Administration Irregularity (E). (Same as Roster).
4. The number that Did Not Test is equal to the number of students classified as: Did Not Test (J), Parental Refusal (G), ELL Exempt (H), Exempt (I), Withdrew (K), No Longer Eligible (L), Invalidated (F), Tested-Incomplete (D) or Early Stopping Rule Misadministration (C).
a. Note: Withdrew and No Longer Eligible students are only included if they are included in the number Enrolled, as a result of being reported in the other content area.
5. The number and percent at each performance level calculations are based on the number of Tested students.

E. Student Results Data File Specifics

1. All students in the Analysis and Reporting Dataset are included in the Student Results data files for their school, district, and state, per the Student Results Data File Layout. One file is created containing all grades for each entity with reporting results.
2. Refer to the file layout for specific data elements and valid values, as well as identification of which fields are included in the school and district files. All fields are included in the state file.
3. Student Results Data Files are comma delimited (CSV).
a. Measured Progress will remove embedded commas from character fields in the data prior to exporting.
4. There will be one (1) record per student containing the final Math and ELA test results used for reporting.
5. For students with reporting statuses that do not receive item scores, raw score, scaled scores, and performance levels, these fields will be set to blank in the school, district, and state student results data files. See the Participation Status Summary Table (Pg. 5).
6. School, District Files - Additional Notes:
a. All fields marked as "No" in the Student Results Data File layout for the "School or District data" column are excluded from school and district data files.
b. Raw scores, scaled scores, and performance levels are set to blank for students with a participation status showing "No" for these scores in the Participation Status summary table (See Decision Rules Page 5).
7. Item responses to core items (items that contribute to a student's raw score for reporting) are included in the state file for Math and ELA, following MP's "+-data" format. See the layout for specific value details.
8. For 16-17, the field-test writing prompt scores are not available at the time of reporting and, if left in the layout, will be set to blank. They will be excluded from all school and district data files entirely.
9. The Test_Proctor_ID associated with each test is included in the state file. This ID corresponds to an additional lookup file that will be delivered to states (via MP FTP) with Test Proctor information.

F. State Duplicate / Void Data File

1. One file is created per state containing all non-reported tests classified as Duplicate/Void, including off-grade tests.
2. The Duplicate/Void data file will follow the same layout as the State Student Results data file layout, however, there may be several records per student depending on the number of Duplicate/Void tests. Each record may contain results for only one or both subjects.
3. The grade will reflect the grade level of the test. For off-grade tests this will differ from the grade level the student is reported under, and may differ for a single student within this file if they took tests at multiple grades.
4. Scores and performance levels are not calculated for these tests and may be blank. All available data will be provided as-is, and is provided to states for informational purposes only and should be interpreted with caution as it has not been through the full cleanup process that is applied to reported data.

G. Early Release Data File-Applicable to South Dakota only.

1. A preliminary results file will be generated for South Dakota this year. The file will be produced after removing students moved to the Do Not Process School " 9999 ".
2. The following issues may be present in the preliminary results, and will be resolved through the standard MP cleanup and processing rules defined by this document for final reporting:
a. Duplicate student records.
b. Duplicate tests.
c. Incorrect and/or incomplete demographics, missing demographics will be left blank.
d. Incorrect school/district assignments.
e. No state-supplied invalidations or exemptions applied. All tests will be assigned one of the MP-calculated participation statuses.
f. No writing scores.
g. Blank or invalid values for fields expected to be resolved during cleanup.
h. The grade level will reflect the grade level of the test.
i. Scaled scores, performance levels are assigned based on available information and calculated statuses.
j. The same blanking rules of scores and results that are defined for the state student results file based on test status are applied per the calculated test statuses available.
3. The State is required to follow the standard demographic cleanup process (separate from this preliminary results file), and preliminary results are subject to change as a result of cleanup.
4. The preliminary results file will follow the same layout as the State Student Results data file layout, however, as a result of the data being incomplete and the capacity for a student to have multiple tests per content area; fields may contain blank or invalid values.

APPENDIX F-MSAA 2017 GUIDE FOR SCORE REPORT INTERPRETATION

Multi-State Alternate Assessment (MSAA)

2017 Guide
 for
 Score Report Interpretation

State Specific Information

Listed below is the contact information for each state's MSAA State Lead:

Arizona	Arkansas	District of Columbia
Audra Ahumada	Ann Finch	Nikki Stewart
602-542-5450	501-682-5303	202-741-5538
Audra.Ahumada@azed.gov	Ann.Finch@arkansas.gov	nikki.stewart@dc.gov
Bethany Zimmerman 602-542-4061 Bethany.Zimmerman@azed.gov		Michael Craig Michael.craig@dc.gov
Maine Sue Nay 207-624-6774 Sue.Nay@maine.gov	Maryland	Montana
	Ann Herrmann	Yvonne Field
	410-767-0086	406-444-0748
	Ann.Herrmann@maryland.gov	yfield@mt.gov
	Marsie Torchon 410-767-2498 martha.torchon@maryland.gov	
Rhode Island Heather Heineke 401-222-8493 Heather.Heineke@ride.ri.gov	South Dakota	Tennessee
	Jan Martin	Lori Nixon
	605-773-3246	615-741-5113
	Jan.Martin@state.sd.us	Lori.Nixon@tn.gov
	Ben Morrison 605-773-6119 Ben.Morrison@state.sd.us	
United States Virgin Islands Alexandria Baltimore-Hookfin 340-773-1095 ext. 7084 alexandria.baltimore@vide.vi	PAC-6	
	June De Leon (Guam / CNMI)	
	671-735-2494	
	June.DeLeon@guamcedders.org	
	Terese Crisostomo (Guam)	
	671-300-1323	
	tdcrisostomo@gdoe.net	
	Fasefulu Tigilau (CNMI)	
	670-237-3199	
	Fasefulu.Tigilau@cnmipss.org	
	Laura Brown (CNMI)	
	670-237-3022	
	Laura.Brown@cnmipss.org	

Table of Contents

Introduction to the MSAA

Purpose 1
StudentParticipation 2
Overview of the MSAA Format 3
Scoring 3
MSAA Score Reports
Overview 4
Interpreting and Using the MSAA Scores 5
Talking to Parents and Guardians 5
Special Reporting Codes and Messages 6
Types of Score Reports 7
Student Results File CSV 7
Testing Participation Requirements by Content Area 7
District Summary Report 8
Reports for the School
School Summary Report 9
School Roster Report 10
Individual Student Report 11
Appendix A: Performance Level Descriptors 12
Appendix B: Individual Student Report 28
Appendix C: Writing Scoring Rubrics 32

Introduction to the MSAA

Purpose

The Multi-State Alternate Assessment (MSAA) is a comprehensive assessment system designed to promote increasing higher academic outcomes for students with significant cognitive disabilities in preparation for a broader array of post-secondary outcomes. The MSAA is designed to measure academic content that is aligned to and derived from your state's content standards. This test contains many built-in supports that allow students to use materials they are most familiar with and communicate what they know and can do as independently as possible. The MSAA is administered in the areas of English Language Arts (ELA) and mathematics in grades 3-8 and 11.

This assessment was developed through the research and development completed by the National Center and State Collaborative (NCSC) and has been carried forward by the MSAA State Partners. MSAA is currently being administered by eleven participating states: Arizona, Arkansas, Maine, Maryland, Montana, the Pacific Assessment Consortium (PAC-6) ${ }^{[1]}$, Rhode Island, South Dakota, Tennessee, U.S. Virgin Islands, and Washington, D.C.

This guide provides information regarding the administration and results of the spring 2017 MSAA to district and school personnel.
${ }^{[1]}$ The Pacific Assessment Consortium (including the entities of American Samoa, Commonwealth of the Northern Mariana Islands, Federated States of Micronesia, Guam, Republic of Palau, and Republic of the Marshall Islands) are collectively considered one state, led by the University of Guam Center for Excellence in Developmental Disabilities Education, Research, and Service (CEDDERS).

Student Participation

The criteria for student participation in the MSAA reflect the pervasive nature of a significant cognitive disability. All content areas should be considered when determining who should participate in this assessment. The table below shows the participation criteria and the descriptors used to determine eligibility for participation for each student. Students must meet the following eligibility criteria:

Participation Criteria	Participation Criteria Descriptors
1. The student has a significant cognitive disability.	Review of student records indicates a disability or multiple disabilities that significantly impact intellectual functioning and adaptive behavior.* *Adaptive behavior is defined as essential for someone to live independently and to function safely in daily life.
2. The student is learning content linked to (derived from) the State's Content Standards.	Goals and instruction listed in the IEP for this student are linked to the enrolled grade-level State's Content Standards and address knowledge and skills that are appropriate and challenging for this student.
3. The student requires extensive direct individualized instruction and substantial supports to achieve measureable gains in the grade and age-appropriate curriculum.	The student (a) requires extensive, repeated, individualized instruction and support that is not of a temporary or transient nature, and (b) uses substantially adapted materials and individualized methods of accessing information in alternative ways to acquire, maintain, generalize, demonstrate, and transfer skills across multiple settings.

Assessments for students with significant cognitive disabilities rely on a foundation of communicative competence. Students who do not have receptive and expressive communication are unlikely to be able to demonstrate what they know and can do on an assessment. Students who do not have a mode of communication are identified during the assessment process. Post assessment, teachers may use the Communication Toolkit developed by NCSC to help these students develop a mode of communication. The toolkit can be found here: https://wiki.ncscpartners.org/index.php/Communication Tool Kit.

Overview of the MSAA Format

The MSAA assesses ELA (reading and writing) and mathematics at grades 3-8 and 11 and is aligned to the State's Content Standards and the MSAA Core Content Connectors. The MSAA is a computer-based, on demand, stage adaptive assessment consisting mostly of selected response and some constructed response items written at four levels of complexity. These complexity levels represent different levels of skill acquisition by students.

Students with significant cognitive disabilities often need materials and instructional strategies that are substantially adapted, scaffolded, and have built-in supports to meet their individual needs.

The MSAA levels of complexity are designed to follow instructional practices. When students begin to learn a new skill, or acquire new knowledge, they need more support. As students learn and develop mastery of that skill or knowledge, they need less support. The test items on the MSAA are developed with many scaffolds and supports embedded within the items. Supports not embedded in the test items may be provided as accommodations, as well as other allowable ways to present the item to a student, based on their individual requirements.

The assessment is a computer based test (CBT) designed to be administered one-on-one. Based on the needs of the student, the assessment may also be delivered in a paper-pencil format. The needs of the student may also be addressed through other supports and accommodations such as: reading the test aloud, having a scribe, using manipulatives, object replacement, translating the test into ASL, among others.

Each content area consists of 30-40 items that are mostly selected response. The writing portion of the ELA test contains a scaffolded writing prompt at each grade level. Each content test is divided into test sessions. Test administrators have substantial leeway in developing a testing schedule with the ability to start and stop a test depending on the engagement of the student.

Scoring

Scoring of most items is accomplished within the online test platform. The selected response items are scored as correct or incorrect by the test platform based on the answer keys programmed into the system. Other constructed response items are scored by the Test Administrator and then marked correct or incorrect in the test platform. Items without responses receive a score of zero.

The writing prompts at each grade level were field tested this year. Student responses are handscored. Results from the writing prompts will not be included on score reports and are not part of the overall ELA score for the 2016-17 year.

MSAA Score Reports

Overview

This guide describes the types of score reports provided for the 2016-17 MSAA administration. The data in the sample reports are for illustrative purposes only and are not intended to reflect performance of any student(s).

Information included on the score reports:

- Performance Levels describe how the student performed in relation to the knowledge and skills of that content area and grade level. Each performance level has two components: the scale scores that make up each level and the performance level descriptors. The performance level descriptors are broad and general statements regarding skills and abilities of students who have attained each level. Performance levels for the MSAA were established by committees of educators after the first NCSC administration of the assessment in 2015. Performance level descriptors for each content area and grade level can be found in Appendix A of this document. The scale score ranges that make up each performance level can be found in Appendix B.
- Scale scores report the performance level the student achieved. Scale scores are more precise than performance levels and may be used to make comparisons between groups of students, schools, and districts. In Appendix B, Table 1 shows the scale score ranges for each performance level, content area, and grade level.
- Descriptive and informative reports. In addition to including student demographic information, performance level, and scale scores, the Individual Student Report contains supportive information about student performance and MSAA measures.

Interpreting and Using the MSAA Scores

The MSAA tests student performance in ELA and mathematics, based on States Content Standards. The student's performance level is based on alternate achievement standards. Results for the MSAA are reported by a scale score and performance level for each content area.

MSAA scores should be used in conjunction with the Individualized Education Program (IEP) progress reports, student work, diagnostic assessments, district-required assessments, and report cards in order to place the student's performance on academic content and skills in context and to provide a complete picture of the student's progress across a wide range of categories.

It is helpful to read the Performance Level Descriptors to understand the expectations for the performance level and grade level for each student. This information can provide a concrete link from the test to instructional planning.

Talking to Parents and Guardians

When talking to parents and guardians about their child's score, it may be helpful to keep the following in mind:

- The MSAA is a fairly new alternate assessment this school year for states, and we recognize that student achievement may differ between MSAA and the previous state assessments for ELA (reading and writing) and mathematics.
- Previous state assessments measured the old state standards whereas MSAA measures progress toward post-secondary options using the new Common Core Connectors; which are aligned to the States' Content Standards.
- Unless you were part of the NCSC assessment, do not compare results in ELA and mathematics from previous state alternate assessments, with the results of MSAA because they are different tests that measure different standards.
- The MSAA assessments are based on higher learning standards than states have had before, and the MSAA assessment results are still a new baseline for all states.
- MSAA assessment results should be used along with local assessment results and other information to determine what changes in curriculum and instruction may be needed to support students learning.
- MSAA scores alone should not be used to make placement or eligibility decisions.

Special Reporting Codes and Messages

In some cases students were assigned a special reporting code. A complete list of special reporting codes and their associated descriptions is provided below. For additional information or interpretation of special reporting codes, contact your MSAA State Lead.

Test Status		
Code	Test Status	Description
ESR	Early Stopping Rule	If the TA did not observe a student response after the presentation of 4 items, the test was closed by the TA
ESM	Early Stopping Rule Misadministration	Testing may have ended early on the basis that a consistent mode of communication was not observed. At least one response was recorded for the student, but the student may not have had the opportunity to complete the entire test.
INC	Tested - Incomplete	The student's test was not submitted by the close of testing. The student may not have had the opportunity to complete the entire test.
IRR	Administration Irregularity	An administration irregularity not necessitating an invalidation of scores was reported for the student's test.
INV	Invalidated	The results of the student's test have been invalidated.
PRF	Parental Refusal	The student did not test due to a Parent/Guardian refusal.
ELL	ELL Exempt (ELA Only)	The student was exempt from ELA testing due to being a first year English Language Learner.
EXE	Exempt (Emergency, Medical, Other)	The student was exempt from testing.
DNT	Did Not Test	The student did not test via the MSAA assessment.
WDR	Withdrew	The student withdrew.
NLE	No Longer Eligible	The student is not eligible to test via the MSAA assessment.

Types of Score Reports

Below are the types of MSAA score reports that will be available on the MSAA Reporting Portal. Only District testing coordinators using their current MSAA username and password may access the MSAA reports here: https://www.msaaassessment.org under the Reporting Tab. All MSAA score reports are confidential documents.

- Reports for the District
- District Summary Report
- Student Results File CSV
- Reports for the School
- School Summary report
- School Roster Report
- Student Results File CSV
- Individual Student Report

If you have any questions about accessing these MSAA reports, contact your MSAA State Lead. Contact information can be found at the beginning of this document.

Student Results File CSV

A CSV file of all student results will be available to District Test Coordinators through the MSAA Reporting Portal. For information regarding this file, contact your MSAA State Lead.

Testing Participation Requirements by Content Area

All students in grades $3-8$ and 11 are required to be assessed in ELA and mathematics. Participation Status is assigned independently for ELA and mathematics.

All Submitted tests receive a Participation Status, regardless of the number of item responses.

For additional information regarding the reported test status, contact your MSAA State Lead. Contact information can be found at the beginning of this document.

Reports for District

District Summary Report

The District Summary Report (DSR) provides district staff with a summary of student participation and performance by district and school. See Figure 1 below.

Figure 1 - Sample District Summary Report

The District Summary Report contains the following features, highlighted above:

1. Content Area of the report.
2. State and District included in the report.
3. Summary of results by Grade Level. The state and district data shown here are other third graders in the state and district.
4. Number of students Enrolled, Tested, Invalid and Did Not Test, and Average Scale Score by State, District and School. Refer to the Special Reporting Codes and Messages for information regarding test status.
5. The number and percentage of students at each performance level by grade in the state, district.

Reports for the School

School Summary Report

Figure 2 - Sample School Summary Report

The School Summary Report contains the following features, highlighted above:

1. Content Area of the report.
2. State, District and School included in the report.
3. Summary of results by Grade Level. The state and district data shown here are other third graders in the state, district and school.
4. Number of students Enrolled, Tested, Invalid and Did Not Test, and Average Scale Score by State, District and School. Refer to the Special Reporting Codes and Messages for information regarding test status.
5. The number and percentage of students at each performance level by grade in the state, district and school.

School Roster Report

The school roster report provides student performance information at the school level for each grade, including each student's test status, scale score and performance level. See Figure 3 below.

Figure 3 - Sample School Roster Report

The School Roster Report contains the following features, highlighted above:

1. The state, district and school included in the report.
2. The results are displayed by Content Area.
3. A summary of enrolled and tested students and the average scale score for the state, district and reported school.
4. This section of the report includes all students tested at the school for the specified grade.
5. For each content area the student's test status, comparison to other students in the same grade level in the state, scale score and performance level is displayed.
6. This key shows symbols used in the "State Compare" column.

Individual Student Report

The Individual Student Report (ISR) provides scale score and performance level information for a specific student. Figure 4 shows page 2 of the ISR. A full sample ISR is included in Appendix B.

Figure 4 - Sample Individual Student Report

1 2017 Results for First13 LastName13 (17665) | Grade 04 | Demonstration School 1
 texts and use context to define multiple meaning words; use brief informational text with simple sentences to identify topic, charts, graphs, diagrams, and timelines, and use context to define multiple meaning words; and develop explanatory text by identifying a concluding sentence.

5 Mathematics

Level 2 Children performing at this level use built-in supports to show what they know and can do. A child is generally able to: solve simple multiplication problems using mathematical language and symbolic representations (e.g., <, >, =); round numbers; identify parts and wholes; identify equivalent fractions; identify one set of objects divided into two equal parts; identify the parts of 2 -dimensional shape; and compute the perimeter of a rectangle.

The Individual Student Report contains the following features, highlighted above:

1. The report header includes the student's full name, student ID, Grade and School.
2. The student's scale score and performance level for each content area is shown.
3. This display shows the student's score compared to the performance level scale.
4. This text shows the performance level descriptor for the student's performance level.
5. The results for each content area are displayed separately on the report.

Appendix A

Performance Level Descriptors

Performance Level Descriptors for ELA and Mathematics

MSAA developed Performance Level Descriptors for ELA and mathematics at grades 3-8 and 11 through an iterative process involving multiple stakeholder groups. The MSAA partnership developed grade-level PLDs to summarize the knowledge, skills, and abilities (KSAs) prioritized for the MSAA that students need to attain at each level of achievement (Level 1- Level 4). Each performance level is understood to include the knowledge, skills and abilities of the preceding performance levels.

The performance descriptors included in Appendix A provide a detailed description for teachers, parents, and the public to see not only what grade-level content a student should know and be able to do in order to meet high expectations, but also the depth, breadth, and complexity of that content.

By using the PLDs, test results become multi-dimensional. Test results in the form of scale scores are one way educators, parents, and guardians find out where a student's performance is in relation to other students. The PLDs provide another dimension that completes the description of how a student interacts with the standards the test measures. Both of the scale score and the PLDs provide information that helps teachers, schools, parents and guardians build a path to student learning.

Level 1	Level 2	Level 3	Level 4
Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.
In reading, he/she is able to: - identify the topic of a literary text - identify a detail from a literary text - identify a character or setting in a literary text - identify the topic of an informational text - identify a title, caption, or heading in an informational text - identify an illustration related to a given topic - identify a topic presented by an illustration - identify the meaning of words (i.e., nouns)	In reading, he/she is able to: - determine the central idea and supporting details in literary text - determine the main idea and identify supporting details in informational text - determine the main idea of visually presented information - identify the purpose of text features in informational text - use information from charts, graphs, diagrams, or timelines in informational text to answer questions - use context to identify the meaning of multiple meaning words	In reading, he/she is able to: - determine the central idea and supporting details in literary text - determine the main idea and identify supporting details in informational text - determine the main idea of visually presented information - identify the purpose of text features in informational text - use information from charts, graphs, diagrams, or timelines in informational text to answer questions - use context to identify the meaning of multiple meaning words	In reading, he/she is able to: - determine the central idea and supporting details in literary text - determine the main idea and identify supporting details in informational text - determine the main idea of visually presented information - identify the purpose of text features in informational text - use information from charts, graphs, diagrams, or timelines in informational text to answer questions - use context to identify the meaning of multiple meaning words
	AND with Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	AND with High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.	
	- use details from a literary text to answer specific questions - describe the relationship between characters, and character and setting in literary text	- use details from a literary text to answer specific questions - describe the relationship between characters, and character and setting in literary text	
AND in writing, he/she is able to: - identify a statement related to an everyday topic	AND in writing, he/she is able to: - identify the category related to a set of facts	AND in writing, he/she is able to: - identify a text feature (e.g., captions, graphs or diagrams) to present information in explanatory text	

Level 1	Level 2	Level 3	Level 4
Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.
In reading, he/she is able to: - identify a topic of a literary text - identify a detail from a literary text - identify a character in a literary text - identify charts, graphs, diagrams, or timelines in an informational text - identify a topic of an informational text - use context to identify the meaning of multiple meaning words - identify general academic words	In reading, he/she is able to: - determine the theme of literary text and identify supportive details - describe character traits using text-based details in literary text - determine the main idea of informational text - locate information in charts, graphs, diagrams, or timelines - use information from charts, graphs, diagrams, or timelines in informational text to answer questions - use general academic words	In reading, he/she is able to: - determine the theme of literary text and identify supportive details - determine the main idea of informational text - explain how the information provided in charts, graphs, diagrams, or timelines contributes to an understanding of informational text - use information from charts, graphs, diagrams, or timelines in informational text to answer questions - use general academic words	In reading, he/she is able to: - determine the theme of literary text and identify supportive details - determine the main idea of informational text - explain how the information provided in charts, graphs, diagrams, or timelines contributes to an understanding of informational text - use information from charts, graphs, diagrams, or timelines in informational text to answer questions - use general academic words
	AND with Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	AND with High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.	
	- use details from a literary text to answer specific questions - use context to identify the meaning of multiple meaning words	- use details from a literary text to answer specific questions - describe character traits using textbased details in literary text - use context to identify the meaning of multiple meaning words	
AND in writing, he/she is able to: - identify the concluding sentence in a short explanatory text	AND in writing, he/she is able to: - identify a concluding sentence related to information in explanatory text	AND in writing, he/she is able to: - identify a text feature (e.g., headings, charts, or diagrams) to present information in explanatory text	

Level 1	Level 2	Level 3	Level 4
Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.
In reading, he/she is able to: - identify an event from the beginning of a literary text - identify a detail from a literary text - identify a character, setting and event in a literary text - identify the topic of an informational text - identify the main idea of an informational text - identify the difference in how information is presented in two sentences	In reading, he/she is able to: - compare characters, settings, and events in literary text - determine the main idea and identify supporting details in informational text - use details from the text to support an author's point in informational text - compare and contrast how information and events are presented in two informational texts - use context to identify the meaning of multiple meaning words	In reading, he/she is able to: - compare characters, settings, and events in literary text - determine the main idea and identify supporting details in informational text - use details from the text to support an author's point in informational text - compare and contrast how information and events are presented in two informational texts - use context to identify the meaning of multiple meaning words	In reading, he/she is able to: - compare characters, settings, and events in literary text - determine the main idea and identify supporting details in informational text - use details from the text to support an author's point in informational text - compare and contrast how information and events are presented in two informational texts - use context to identify the meaning of multiple meaning words
	AND with Moderate text complexity Text with clear, complex ideas and relationships and simple; compound sentences.	AND with High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.	
	- summarize a literary text from beginning to end - use details from a literary text to answer specific questions	- summarize a literary text from beginning to end - use details from a literary text to answer specific questions	
AND in writing, he/she is able to: - identify the category related to a set of common nouns	AND in writing, he/she is able to: - identify a sentence that is organized for a text structure such as comparison/contrast	AND in writing, he/she is able to: - support an explanatory text topic with relevant information	

Level 1	Level 2	Level 3	Level 4
Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.
In reading, he/she is able to: - identify an event from the beginning or end of a literary text - identify a detail from a literary text - identify a character in a literary text - identify the topic of an informational text - identify the main idea of an informational text - identify a fact from an informational text - identify a description of an individual or event in an informational text - use context to identify the meaning of multiple meaning words - identify the meaning of general academic words	In reading, he/she is able to: - summarize a literary text from beginning to end without including personal opinions - support inferences about characters using details in literary text - use details from the text to elaborate a key idea in informational text	In reading, he/she is able to: - summarize a literary text from beginning to end without including personal opinions - support inferences about characters using details in literary text - summarize an informational text without including personal opinions - use details from the text to elaborate a key idea in informational text - use evidence from the text to support an author's claim in informational text - summarize information presented in two informational texts - use domain specific words accurately	In reading, he/she is able to: - summarize a literary text from beginning to end without including personal opinions - use details from a literary text to answer specific questions - support inferences about characters using details in literary text - use details from the text to elaborate a key idea in an informational text - use evidence from the text to support an author's claim in informational text - use domain specific words accurately
	AND with Moderate text complexity Text with clear, complex ideas and relationships and simple; compound sentences.	AND with High text complexity Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.	
	- use details from a literary text to answer specific questions - use context to identify the meaning of multiple meaning words	- use details from a literary text to answer specific questions - use context to identify the meaning of multiple meaning words	
AND in writing, he/she is able to: - identify an everyday order of events	AND in writing, he/she is able to: - identify the next event in a brief narrative	AND in writing, he/she is able to: - identify transition words and phrases to convey a sequence of events in narrative text	

Grade 7 ELA Performance Level Descriptors

Level 1	Level 2	Level 3	Level 4
Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.
In reading, he/she is able to: - identify a theme from a literary text - identify an inference from a literary text - identify a conclusion from an informational text - identify a claim the author makes in an informational text - compare and contrast two statements related to the same topic - use context to identify the meaning of words	In reading, he/she is able to: - identify the relationship between individuals or events in an informational text - use evidence from the text to support an author's claim in informational text in informational text	In reading, he/she is able to: - use details to support a conclusion from informational text - use details to explain how the interactions between individuals, events or ideas in informational texts are influenced by each other - use evidence from the text to support an author's claim in informational text - compare and contrast how two authors write about the same topic in informational texts - use context to identify the meaning of grade-level phrases	In reading, he/she is able to: - use details to support a conclusion from informational text - use details to explain how the interactions between individuals, events or ideas in informational texts are influenced by each other - use evidence from the text to support an author's claim in informational text - compare and contrast how two authors write about the same topic in informational texts - use context to identify the meaning of grade-level phrases
	AND with Moderate text complexity Text with clear, complex ideas and relationships and simple; compound sentences.	AND with High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.	
	- use details to support themes from literary text - use details to support inferences from literary text	- use details to support themes from literary text - use details to support inferences from literary text	
AND in writing, he/she is able to: - identify a graphic that includes an event as described in a text	AND in writing, he/she is able to: - identify the next event in a brief narrative	AND in writing, he/she is able to: - identify a sentence that provides a conclusion in narrative text	

Level 1	Level 2	Level 3	Level 4
Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.
In reading, he/she is able to: - identify a theme from a literary text - identify an inference from a literary text - identify a fact related to a presented argument in informational text - identify a similar topic in two informational texts - use context to identify the meaning of multiple meaning words - identify the meaning of general academic words	In reading, he/she is able to: - use details to support a conclusion from literary text - identify an inference drawn from an informational text - identify the portion of text which contains specific information - identify an argument the author makes in informational text - examine parts of two informational texts to identify where the texts disagree on matters of fact or interpretation - use domain specific words or phrases accurately	In reading, he/she is able to: - use details to support a conclusion from literary text - use details to support an inference from informational text - identify the information (e.g., facts or quotes) in a section of text that contributes to the development of an idea - identify an argument the author makes in informational text - examine parts of two informational texts to identify where the texts disagree on matters of fact or interpretation - use domain specific words and phrases accurately	In reading, he/she is able to: - use details to support a conclusion from literary text - use details to support an inference from informational text - identify the information (e.g., facts or quotes) in a section of text that contributes to the development of an idea - identify an argument the author makes in informational text - examine parts of two informational texts to identify where the texts disagree on matters of fact or interpretation - use domain specific words and phrases accurately
	AND with Moderate text complexity Text with clear, complex ideas and relationships and simple; compound sentences.	AND with High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.	
	- analyze the development of a theme including the relationship between a character and an event in literary text - use context to identify the meaning of grade-level words and phrases	- analyze the development of a theme including the relationship between a character and an event in literary text - use context to identify the meaning of grade-level words and phrases	
AND in writing, he/she is able to: - identify a writer's opinion	AND in writing, he/she is able to: - identify an idea relevant to a claim	AND in writing, he/she is able to: - identify relevant information to support a claim	

Level 1	Level 2	Level 3	Level 4
Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Low text complexity - Brief text with straightforward ideas and relationships; short, simple sentences.	Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.
In reading, he/she is able to: - identify a summary of a literary text - identify an event from a literary text - identify the central idea of an informational text - identify facts from an informational text - identify what an author tells about a topic in informational text - use context to identify the meaning of multiple meaning words - identify a word used to describe a person, place, thing, action or event	In reading, he/she is able to: - use details to support a summary of literary text - identify a conclusion from an informational text - identify key details that support the development of a central idea of an informational text - use details presented in two informational texts to answer a question - explain why an author uses specific word choices within texts	In reading, he/she is able to: - use details to support a summary of literary text - use details to support a conclusion presented in informational text - identify key details that support the development of a central idea of an informational text - use details presented in two informational texts to answer a question - explain why an author uses specific word choices within texts	In reading, he/she is able to: - use details to support a summary of literary text - use details to support a conclusion presented in informational text - identify key details that support the development of a central idea of an informational text - use details presented in two informational texts to answer a question - explain why an author uses specific word choices within texts
	AND with Moderate text complexity - Text with clear, complex ideas and relationships and simple; compound sentences.	AND with High text complexity - Text with detailed and implied complex ideas and relationships; a variety of sentence types including phrases and transition words.	
	- evaluate how the author's use of specific details in literary text contributes to the text - determine an author's point of view about a topic in informational text - use context to identify the meaning of grade-level phrases	- evaluate how the author's use of specific details in literary text contributes to the text - determine an author's point of view about a topic in informational text - use context to identify the meaning of grade-level phrases	
AND in writing, he/she is able to: - identify information which is unrelated to a given topic	AND in writing, he/she is able to: - identify how to group information for a specific text structure	AND in writing, he/she is able to: - identify relevant information to address a given topic and support the purpose of a text	

Level 1	Level 2	Level 3	Level 4
Low task complexity - Simple problems using common mathematical terms and symbols	Low task complexity - Simple problems using common mathematical terms and symbols	Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	High task complexity - Multiple mathematical ideas presented in problems using various mathematical terms and symbolic representations of numbers, variables, and other item elements
He /she is able to: - solve addition problems - identify growing number patterns - identify an object showing a specified number of parts shaded - identify which object has the greater number of parts shaded - identify an object equally divided in two parts - identify the number of objects to be represented in a pictograph	He /she is able to: - solve addition and subtraction word problems - identify an arrangement of objects which represents factors in a problem - solve multiplication equations in which both numbers are equal to or less than five - identify multiplication patterns - identify a set of objects as nearer to 1 or 10 - identify a representation of the area of a rectangle	He /she is able to: - solve addition and subtraction word problems - check the correctness of an answer in the context of a scenario - solve multiplication equations in which both numbers are equal to or less than five - identify multiplication patterns - match fraction models to unitary fractions - compare fractions with different numerators and the same denominator - transfer data from an organized list to a bar graph	He /she is able to: - solve addition and subtraction word problems - check the correctness of an answer in the context of a scenario - solve multiplication equations in which both numbers are equal to or less than five - identify multiplication patterns - match fraction models to unitary fractions - compare fractions with different numerators and the same denominator - transfer data from an organized list to a bar graph
	AND with Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	AND with High task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	
	- identify geometric figures which are divided into equal parts	- round numbers to nearest 10 - identify geometric figures which are divided into equal parts - count unit squares to compute the area of a rectangle	

Grade 4 Mathematics Performance Level Descriptors

Level 1	Level 2	Level 3	Level 4
Low task complexity - Simple problems using common mathematical terms and symbols	Low task complexity - Simple problems using common mathematical terms and symbols	Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	High task complexity - Multiple mathematical ideas presented in problems using various mathematical terms and symbolic representations of numbers, variables, and other item elements
He/she is able to: - identify an array with the same number of objects in each row - identify values rounded to nearest tens place - identify equivalent representations of a fraction (e.g., shaded diagram) - compare representations of a fraction (e.g., shaded diagram) - identify a rectangle with the larger or smaller perimeter - identify a given attribute of a shape - identify the data drawn in a bar graph that represents the greatest value	He /she is able to: - match a model to an multiplication expression using two single digit numbers - identify a model of a multiplicative comparison - show division of objects into equal groups - round numbers to nearest 10,100 or 1000 - differentiate parts and wholes - compute the perimeter of a rectangle AND with Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - identify equivalent fractions - select a 2-dimensional shape with a given attribute	He /she is able to: - solve multiplication word problems - show division of objects into equal groups - round numbers to nearest 10 , 100 , or 1000 - compare two fractions with different denominators - sort a set of 2-dimensional shapes - compute the perimeter of a rectangle - transfer data to a graph AND with High task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - solve a multiplicative comparison word problem using up to twodigit numbers - check the correctness of an answer in the context of a scenario - identify equivalent fractions	He /she is able to: - solve multiplication word problems - show division of objects into equal groups - round numbers to nearest 10 , 100 or 1000 - compare two fractions with different denominators - sort a set of 2-dimensional shapes - compute the perimeter of a rectangle - transfer data to a graph

Grade 5 Mathematics Performance Level Descriptors

Level 1	Level 2	Level 3	Level 4
Low task complexity - Simple problems using common mathematical terms and symbols	Low task complexity - simple problems using common mathematical terms and symbols	Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	High task complexity - Multiple mathematical ideas presented in problems using various mathematical terms and symbolic representations of numbers, variables, and other item elements
He /she is able to: - solve one-step subtraction word problems - divide sets (no greater than 6) into two equal parts - identify values in the tenths place - identify a number in the ones, tens or hundreds place - identify a given axis of a coordinate plan - match the conversion of 3 feet to 1 yard to a model - calculate elapsed time (i.e., hours) - identify whether the values increase or decrease in a line graph	He /she is able to: - identify if the total will increase or decrease when combining sets - perform operations with decimals - identify a symbolic representation of the addition of two fractions - identify place values to the hundredths place - convert standard measurements	He /she is able to: - solve multiplication and division word problems - perform operations with decimals - solve word problems involving fractions - identify place values to the hundredths place - locate a given point on a coordinate plane when given an ordered pair - convert standard measurements - convert between minutes and hours - make quantitative comparisons between data sets shown as line graphs	He /she is able to: - solve multiplication and division word problems - perform operations with decimals - solve word problems involving fractions - identify place values to the hundredths place - locate a given point on a coordinate plane when given an ordered pair - convert standard measurements - convert between minutes and hours - make quantitative comparisons between data sets shown as line graphs
	AND with Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - compare the values of two products based upon multipliers - round decimals to nearest whole number	AND with High task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - compare the values of two products based upon multipliers - round decimals to nearest whole number	

Level 1	Level 2	Level 3
Low task complexity -	Low task complexity -	Moderate task complexity - Simple problems using common mathematical terms and symbols
Simple problems using common mathematical terms and symbols problems presented in		
mathematical context using various		
mathematical terms and symbols		

$\mathrm{He} /$ she is able to:

- identify a model of a given percent
- match a given unit rate to a model
- identify a representation of two equal sets
- identify a number less than zero on a number line
- identify the meaning of an unknown in a modeled equation
- count the number of grids or tiles inside a rectangle to find the area of a rectangle
- identify the object that appears most frequently in a set of data (mode)
- identify a representation of a set of data arranged into even groups (mean)

He /she is able to:

- match a given ratio to a model
- recognize a representation of the sum of two halves
- solve real world measurement problems involving unit rates
- identify a representation of a value less than zero
- identify the median or the equation needed to determine the mean of a set of data

$\mathrm{He} /$ she is able to:

- perform operations using up to three-digit numbers
- solve real world measurement problems involving unit rates
- identify positive and negative values on a number line
- determine the meaning of a value from a set of positive and negative integers
- solve word problems with expressions including variables
- compute the area of a parallelogram
- identify the median or the equation needed to determine the mean of a set of data
AND with Moderate task complexity
-

Common problems presented in
mathematical context using various
mathematical terms and symbols

- perform one-step operations with two decimal numbers
- solve word problems using a percent

Level 4

High task complexity -

Multiple mathematical ideas presented in problems using various mathematical terms and symbolic representations of numbers, variables, and other item elements

$\mathrm{He} /$ she is able to:

- solve real world measurement problems involving unit rates
- identify positive and negative values on a number line
- solve word problems with expressions including variables
- compute the area of a parallelogram
- identify the median or the equation needed to determine the mean of a set of data

AND with High task complexity Common problems presented in mathematical context using various mathematical terms and symbols

- perform one-step operations with two decimal numbers
- solve word problems using a percent
- solve word problems using ratios and rates

Level 1	Level 2	Level 3	Level 4
Low task complexity - Simple problems using common mathematical terms and symbols	Low task complexity - Simple problems using common mathematical terms and symbols	Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	High task complexity - Multiple mathematical ideas presented in problems using various mathematical terms and symbolic representations of numbers, variables, and other item elements
He/she is able to: - identify a representation which represents a negative number and its multiplication or division by a positive number - identify representations of area and circumference of a circle - identify representations of surface area - make qualitative comparisons when interpreting a data set presented on a bar graph or in a table	He /she is able to: - match a given ratio to a model - identify the meaning of an unknown in a modeled equation - describe a directly proportional relationship (i.e., increases or decreases) - find the surface area of threedimensional right prism	He /she is able to: - solve division problems with positive/negative whole numbers - solve word problems involving ratios - use a proportional relationship to solve a percentage problem - identify proportional relationships between quantities represented in a table - identify unit rate (constant of proportionality) in tables and graphs of proportional relationships - compute the area of a circle - find the surface area of a threedimensional right prism	$\mathrm{He} /$ she is able to: - solve division problems with positive/negative whole numbers - solve word problems involving ratios - identify proportional relationships between quantities represented in a table - compute the area of a circle - find the surface area of a three-dimensional right prism
	AND with Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	AND with High task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	
	- solve multiplication problems with positive/negative whole numbers - interpret graphs to qualitatively contrast data sets	- solve multiplication problems with positive/negative whole numbers - evaluate variable expressions that represent word problems - interpret graphs to qualitatively contrast data sets	

Level 1	Level 2	Level 3	Level 4
Low task complexity - Simple problems using common mathematical terms and symbols	Low task complexity - Simple problems using common mathematical terms and symbols	Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	High task complexity - Multiple mathematical ideas presented in problems using various mathematical terms and symbolic representations of numbers, variables, and other item elements
He/she is able to: - locate a given decimal number on a number line - identify the relatively larger data set when given two data sets presented in a graph - identify congruent rectangles - identify similar rectangles - identify an attribute of a cylinder - identify a rectangle with the larger or smaller area as compared to another rectangle - identify an ordered pair and its point on a graph	He/she is able to: - identify the solution to an equation which contains a variable - identify the y-intercept of a linear graph - match a given relationship between two variables to a model - identify a data display that represents a given situation - interpret data presented in graphs to identify associations between variables AND with Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - identify congruent figures - use properties of similarity to identify similar figures - interpret data tables to identify the relationship between variables	He /she is able to: - locate approximate placement of an irrational number on a number line - solve a linear equation which contains a variable - identify the relationship shown on a linear graph - calculate slope of a positive linear graph - compute the change in area of a figure when its dimensions are changed - solve for the volume of a cylinder - plot provided data on a graph AND with High task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - interpret data presented in graphs to identify associations between variables - interpret data tables to identify the relationship between variables - use properties of similarity to identify similar figures - identify congruent figures	He /she is able to: - locate approximate placement of an irrational number on a number line - solve a linear equation which contains a variable - identify the relationship shown on a linear graph - compute the change in area of a figure when its dimensions are changed - plot provided data on a graph

Level 1	Level 2	Level 3	Level 4
Low task complexity - Simple problems using common mathematical terms and symbols	Low task complexity - Simple problems using common mathematical terms and symbols	Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols	High task complexity - Multiple mathematical ideas presented in problems using various mathematical terms and symbolic representations of numbers, variables, and other item elements
$\mathrm{He} /$ she is able to: - arrange a given number of objects into two sets in multiple combinations - match an equation with a variable to a provided real world situation - determine whether a given point is or is not part of a data set shown on a graph - identify an extension of a linear graph - use a table to match a unit conversion - complete the formula for area of a figure	He/she is able to: - identify the model that represents a square number - identify variable expressions which represent word problems - identify the hypotenuse of a right triangle - identify the greatest or least value in a set of data shown on a number line - identify the missing label on a histogram - calculate the mean and median of a set of data AND with Moderate task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - identify the linear representation of a provided real world situation - use an equation or a linear graphical representation to solve a word problem	He /she is able to: - compute the value of an expression that includes an exponent - identify variable expressions which represent word problems - solve real world measurement problems that require unit conversions - find the missing attribute of a threedimensional figure - determine two similar right triangles when a scale factor is given - make predictions from data tables and graphs to solve problems - plot data on a histogram - calculate the mean and median of a set of data AND with High task complexity - Common problems presented in mathematical context using various mathematical terms and symbols - identify the linear representation of a provided real world situation - use an equation or a linear graphical representation to solve a word problem - identify a histogram which represents a provided data set	$\mathrm{He} /$ she is able to: - identify variable expressions which represent word problems - solve real world measurement problems that require unit conversions - determine two similar right triangles when a scale factor is given - make predictions from data tables and graphs to solve problems - plot data on a histogram - calculate the mean and median of a set of data

Appendix B

Individual Student Report

Spring 2017 English Language Arts and Mathematics Results for First13 LastName13 | Demonstration School 1 | Grade 04

Dear Parents and Guardians,
This report shows your child's scale score and performance level for the 2017 Multi-State Alternate Assessment (MSAA) in Mathematics and English Language Arts (ELA).

The MSAA is a group of states that have partnered to develop and administer your state's online alternate assessment for Mathematics and ELA for grades 3-8 and 11. The MSAA is designed to assess students with significant cognitive disabilities and measures academic content that is aligned to and derived from your state's content standards. The test contains many built-in supports that allow students to take the test using materials they are most familiar with and to communicate what they know and can do as independently as possible. These are some of the built-in supports found in the MSAA:

- shortened ELA reading passages
- pictures, charts, tables, and maps to help students understand the reading passages
- models and examples that explain important ideas and concepts that students can use during the ELA and mathematics tests
- common geometric shapes such as circles, triangles, and squares
- smaller numbers on the mathematics tests
- the option to have the entire test read aloud

In order to support communication independence to the greatest extent possible, the MSAA is designed to work with different communication modes and systems. Please discuss the supports your child used on the MSAA with your child's teacher.

On the following pages, the scale score and performance levels for each content area summarizes your child's performance on the ELA and mathematics. The performance level descriptors describe the knowledge and skills that children who perform at this level generally demonstrate.

More information and resources for helping your child are available at your state's alternate assessment web page or by talking with your child's teacher. If you require this letter or your child's report in a different format, please contact your state's department of education.

Your child's scale score is
 1226

 English Language Arts rour chis's pertormanece evelis Level 1

Meets Expectations
A student's test score can vary. If your child was tested again, it is likely that your child would receive a score between 1223 and 1229 .
Level 1 Children performing at this level use built-in supports to show what they know and can do. A child is generally able to: use brief literary text with simple sentences to identify topics, characters, details, and define words often used in written texts and use context to define multiple meaning words; use brief informational text with simple sentences to identify topic, charts, graphs, diagrams, and timelines, and use context to define multiple meaning words; and develop explanatory text by identifying a concluding sentence.

Mathematics

Meets Expectations
4 student's test score can vary. If your child was tested again, it is likely that your child would receive a score between 1233 and 1243
Level 2 Children performing at this level use built-in supports to show what they know and can do. A child is generally able to: solve simple multiplication problems using mathematical language and symbolic representations (e.g., <, >, =); round numbers; identify parts and wholes; identify equivalent fractions; identify one set of objects divided into two equal parts; identify the parts of 2-dimensional shape; and compute the perimeter of a rectangle.

Table 1
2017 Performance-Level Scale Score Ranges by Content Area and Grade

| Performance
 Level | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Grade 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| Level 4 | $1251-1290$ | $1258-1290$ | $1256-1290$ | $1253-1290$ | $1255-1290$ | $1250-1290$ | $1255-1290$ |
| Level 3 | $1240-1250$ | $1240-1257$ | $1240-1255$ | $1240-1252$ | $1240-1254$ | $1240-1249$ | $1240-1254$ |
| Level 2 | $1234-1239$ | $1234-1239$ | $1232-1239$ | $1231-1239$ | $1236-1239$ | $1230-1239$ | $1236-1239$ |
| Level 1 | $1200-1233$ | $1200-1233$ | $1200-1231$ | $1200-1230$ | $1200-1235$ | $1200-1229$ | $1200-1235$ |
| Mathematics | | | | | | | |
| Level 4 | $1254-1290$ | $1251-1290$ | $1255-1290$ | $1249-1290$ | $1254-1290$ | $1249-1290$ | $1249-1290$ |
| Level 3 | $1240-1253$ | $1240-1250$ | $1240-1254$ | $1240-1248$ | $1240-1253$ | $1240-1248$ | $1240-1248$ |
| Level 2 | $1236-1239$ | $1233-1239$ | $1231-1239$ | $1234-1239$ | $1232-1239$ | $1234-1239$ | $1234-1239$ |
| Level 1 | $1200-1235$ | $1200-1232$ | $1200-1230$ | $1200-1233$ | $1200-1231$ | $1200-1233$ | $1200-1233$ |

Appendix C

Writing Scoring Rubrics

Grade 3 Writing Scoring Rubrics

Tier 3

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The narrative establishes a situation (i.e., activity and setting) and includes a character with relevant descriptive statements. The response provides a conclusion.	The narrative includes at a minimum: character and situation (activity and setting) two descriptions related to a character a conclusion that connects to the situation	The narrative includes at a minimum: character and situation (activity or setting) one description related to a character a conclusion that may not connect to the situation	The narrative includes at a minimum some evidence related to a character, details or descriptive words related to a character, situation, or conclusion.	There is no evidence of organization or the evidence is off topic.
Idea Development - The narrative includes a sequence of events that unfold naturally and develops the story using temporal words.	The narrative includes at a minimum: two sequenced events related to the situation both events include a detail appropriate use of temporal words that signal order of events	The narrative includes at a minimum: two events related to the situation one of the events includes a detail one temporal word that may or may not be used appropriately	The narrative includes at a minimum an event related to the situation.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The narrative includes more than one sentence and at a minimum: capitalization at the beginning of the majority of thought units end punctuation for more than one thought unit one simple sentence that contains a complete thought with subject/verb agreement Ex: "Dog runs" or "dog runs"	The narrative includes at a minimum two of the following: capitalization to begin one thought unit end punctuation for one thought unit one simple sentence with or without subject/verb agreement	The narrative includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Tier 2

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The narrative establishes a situation (i.e., activity and setting) and includes a character with relevant descriptive statements. The response provides a conclusion.	The narrative includes at a minimum: character and situation (activity and setting) a concluding statement that connects to the situation	The narrative includes at a minimum: character and situation (activity or setting) a concluding statement that may not connect to the situation	The narrative includes at a minimum some evidence related to a character, situation or conclusion.	There is no evidence of organization or the evidence is off topic.
Idea Development - The narrative includes a sequence of events that unfold naturally and develops the story using temporal words.	The narrative includes at a minimum: a sequence of two events related to the situation both events include a detail	The narrative includes at a minimum: two events related to the situation one of the events includes a detail	The narrative includes at a minimum an event related to the situation.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The narrative includes more than one sentence and at a minimum: end punctuation for more than one thought unit one simple sentence that contains a complete thought with subject/verb agreement Ex: "Dog runs" or "dog runs"	The narrative includes at a minimum: end punctuation for one thought unit one thought unit with or without subject/verb agreement	The narrative includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Grade 4 Writing Scoring Rubrics

Tier 3

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The narrative establishes a situation (i.e., activity and setting) and includes a character. The response provides a conclusion.	The narrative includes at a minimum: character and situation (activity and setting) description of character and situation (activity or setting) a conclusion that connects to the situation	The narrative includes at a minimum: \square character and situation (activity or setting) \square description of the character or the situation (activity or setting) \square a conclusion that may not connect to the situation	The narrative includes at a minimum some evidence related to a character, details or descriptive words related to a character, situation, or conclusion.	There is no evidence of organization or the evidence is off topic.
Idea Development - The narrative includes a description of events using concrete words or sensory details (e.g., how things look, sound, taste, smell or feel) related to the events.	The narrative includes at a minimum: \square two events related to the situation \square both events include a detail related to a character's action or response to a situation	The narrative includes at a minimum: $\square \quad$ two events related to the situation $\square \quad$ one of the events includes a detail related to a character's action or response to a situation	The narrative includes at a minimum an event related to the situation.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (e.g., subject/verb agreement).	The narrative includes more than one sentence and at a minimum: capitalization at the beginning of the majority of thought units end punctuation for more than one thought unit one complex thought unit that expresses a complete idea with subject/verb agreement Ex: "The dog runs" or "the dog runs"	The narrative includes at a minimum: capitalization to begin one thought unit $\square \quad$ punctuation to end one thought unit one complex thought unit that expresses a complete idea with or without subject/verb agreement	The narrative includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Tier 2

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The narrative establishes a situation (i.e., activity or setting) and includes a character. The response provides a conclusion.	The narrative includes at a minimum: character and situation a concluding statement that connects to the situation	The narrative includes at a minimum: character and situation a concluding statement that may not connect to the situation	The narrative includes at a minimum some evidence related to a character, situation, or conclusion.	There is no evidence of organization or the evidence is off topic.
Idea Development - The narrative includes a description of events using concrete words or sensory details (e.g., adverbs, adjectives, clause, or prepositional phrase) related to the events.	The narrative includes at a minimum: two events related to the situation both of the events include a detail related to character's action or response to a situation	The narrative includes at a minimum: two events related to the situation one of the events includes a detail related to a character's action or response to a situation	The narrative includes at a minimum an event related to the situation.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (e.g., subject/verb agreement).	The essay includes more than one sentence and at a minimum: end punctuation to end more than one thought unit one complex thought unit that expresses a complete idea with subject/verb agreement Ex: "The dog runs" or "the dog runs"	The narrative includes at a minimum: end punctuation to end one thought unit one complex thought unit with or without subject/verb agreement	The narrative includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Grade 5 Writing Scoring Rubrics

Tier 3

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The narrative establishes a situation (i.e., activity and setting) for the story and includes characters. The response provides a conclusion.	The narrative includes at a minimum: two characters unchanged through narrative \square description of the situation (i.e., activity and setting) \square a conclusion that connects to the situation	The narrative includes at a minimum: \square two characters \square a description of the setting or the activity a conclusion that may not connect to the situation	The narrative includes at a minimum some evidence related to a character or conclusion.	There is no evidence of organization or the evidence is off topic.
Idea Development - The narrative includes dialogue, and events supported with relevant details and descriptive statements.	The narrative includes at a minimum: \square two sequenced events related to the situation \square both events include a detail related to a character's action or response to a situation \square represents one relevant conversation between two characters Ex.: I said "No! I don't want to go to bed." Mom said "OK".	The narrative includes at a minimum: \square two events related to a character's action or response to a situation one of the events includes a detail related to a character's action or response to a situation $\square \quad$ a relevant piece of dialogue showing what one character said to the other	The narrative includes at a minimum an event related to the situation.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The narrative includes more than one sentence and at a minimum: $\square \quad$ capitalization at the beginning of the majority of thought units \square end punctuation for the majority of thought units \square one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The narrative includes at a minimum: $\square \quad$ capitalization to begin one thought unit end punctuation for one thought unit one complete sentence with subject/verb agreement	The narrative includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Tier 2

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The narrative establishes a situation (i.e., activity and setting) for the story and includes characters. The response provides a conclusion.	The narrative includes at a minimum: two characters unchanged through narrative establish a situation (i.e., activity and setting) a concluding statement that connects to the situation	The narrative includes at a minimum: two characters a setting or activity a concluding statement that may not connect to the situation	The narrative includes at a minimum some evidence related to a character, situation, or conclusion.	There is no evidence of organization or the evidence is off topic.
Idea Development - The narrative includes dialogue, and events supported with relevant details and descriptive statements.	The narrative includes at a minimum: two events that connect to the narrative both events include a detail related to a character's action or response to a situation one dialogue statement from one character to the other character relevant to the narrative Ex.: I said "No, I want to play."	The narrative includes at a minimum: two events related to a characters' action or response to a situation one of the events includes a detail related to a character's action or response to a situation one dialogue statement from one character to the other character which may not be relevant to the narrative	The narrative includes at a minimum an event related to the situation.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The narrative includes more than one sentence and at a minimum: \square end punctuation for more than one thought unit one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The narrative includes at a minimum: end punctuation for one thought unit one complete sentence with or without subject/verb agreement	The narrative includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Grade 6 Writing Scoring Rubrics

Tier 3

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses a specified topic and is organized to describe two opposing conditions (e.g., compare/contrast).	The essay includes at a minimum: an introduction that presents the two opposing conditions a body that includes: - one activity common to both conditions - one activity related to each of the two opposing conditions a conclusion that states the two opposing conditions	The essay includes at a minimum: an introduction that presents the topic a body that includes: one activity common to both conditions - one activity related to one of the two opposing conditions a conclusion that states the topic	The essay includes at a minimum some evidence related to the specified topic (i.e., introduction, compare/contrast relationship, or conclusion).	There is no evidence of organization or the evidence is off topic.
Idea Development - The essay develops a topic, includes relevant facts and details, to promote meaning and create clarity.	The essay includes at a minimum: one activity related to both conditions with a relevant detail one activity related to each of the two opposing conditions, each with relevant details	The essay includes at a minimum: two activities with relevant details	The essay includes at a minimum an activity or a detail that describes an activity.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject-verb agreement).	The essay includes more than one sentence and at a minimum: \square capitalization at the beginning of the majority of thought units end punctuation for the majority of thought units one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The essay includes at a minimum: capitalization to begin one thought unit end punctuation for one thought unit one complete sentence with subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Tier 2

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses a specified topic and is organized to describe two opposing conditions (e.g., compare/contrast).	The essay includes at a minimum: an introduction that states the essay is about two opposing conditions a body that includes: one activity for each of the two opposing conditions; and - one activity common to both conditions $\square \quad$ a conclusion that states two opposing conditions or summarizes the content	The essay includes at a minimum: an introduction that states one activity or topic a body that relates two conditions with activities a conclusion that states an activity or the topic	The essay includes at a minimum some evidence related to the specified topic (i.e., introduction, compare/contrast relationship, or conclusion).	There is no evidence of organization or the evidence is off topic.
Idea Development - The essay develops a topic, includes relevant facts and details to promote meaning and create clarity.	The essay includes at a minimum: \square three activities, each with relevant details (the same detail may be used for all activities if relevant to each)	The essay includes at a minimum: \square one activity with a relevant detail	The essay includes at a minimum a detail that describes an activity.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subjectverb agreement).	The essay includes more than one sentence and at a minimum: end punctuation for more than one thought unit one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The essay includes at a minimum: end punctuation for one thought unit one complete sentence with or without subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Grade 7 Writing Scoring Rubrics

Tier 3

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses a specified topic and is organized with an effect related directly to a cause (e.g., cause/effect).	The essay includes at a minimum: an introduction that presents the cause and its effects a body that includes two effects and refers them to the cause a conclusion that states the essay is about a cause and its effects	The essay includes at a minimum: an introduction that presents a topic a body that includes one effect and refers it to the cause a conclusion that states the topic	The essay includes at a minimum some evidence related to the specified topic (i.e., introduction, on-topic cause/effect relationship, or conclusion).	There is no evidence of organization or the evidence is off topic.
Idea Development - The essay develops a topic, includes details and transitional words to promote meaning and create clarity.	The essay includes at a minimum: two effects, each with a relevant detail transitional words to connect the cause to each of the two effects	The essay includes at a minimum: one effect with a relevant detail transitional word to connect one cause and effect relationship	The essay includes at a minimum a detail that describes the cause or effect or a transition word.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subjectverb agreement).	The essay includes more than one sentence and at a minimum: capitalization at the beginning of the majority of thought units end punctuation for the majority of thought units one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The essay includes at a minimum: capitalization to begin one thought unit end punctuation for one thought unit one complete sentence with subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Tier 2

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses a specified topic and is organized with an effect related directly to a cause (e.g., cause/effect).	The essay includes at a minimum: introduction that states the topic/cause a body that relates the effect to the provided cause a conclusion that states the essay is about a cause and its effect	The essay includes at a minimum: introduction that states the topic/cause a body that includes an effect that may not relate to the provided cause a conclusion that states a cause or the effect	The essay includes at a minimum some evidence related to the specified topic (i.e., introduction, cause/effect relationship, or conclusion)	There is no evidence of organization or the evidence is off topic.
Idea Development - The essay develops a topic, includes details to promote meaning and create clarity.	The essay includes at a minimum: a relevant detail to describe the effect	The essay includes at a minimum: one effect with no relevant detail	The essay includes at a minimum a related idea to the effect.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subjectverb agreement).	The essay includes more than one sentence and at a minimum: end punctuation for more than one thought unit one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The essay includes at a minimum: end punctuation for one thought unit one complete sentence with or without subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Grade 8 Writing Scoring Rubrics

Tier 3

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses the specified topic and is organized with a solution related directly to the problem (e.g., problem/solution).	The essay includes at a minimum: an introduction that states both parts of the problem a body that includes a solution and refers to the problem a conclusion that states the essay is about the problem and its solution	The essay includes at a minimum: an introduction that states one part of the problem a body that includes a related solution a conclusion that states the problem or the solution	The essay includes at a minimum some evidence related to the specified topic (i.e., introduction, ontopic problem/solution relationship, or conclusion).	There is no evidence of organization or the evidence is off topic.
Idea Development - The essay develops a topic, includes details and transitional words to promote meaning and create clarity.	The essay includes at a minimum: \square a problem with a relevant detail $\square \quad$ a solution with a relevant detail $\square \quad$ a transitional word(s) that connects the problem to the solution	The essay includes at a minimum: \square a problem or solution with a relevant detail a transitional word(s) that is in relation to the problem or the solution	The essay includes at a minimum a detail or word that describes the problem or the solution.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The essay includes more than one sentence and at a minimum: \square capitalization at the beginning of the majority of thought units end punctuation for the majority of thought units one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The essay includes at a minimum: capitalization to begin one thought unit end punctuation for one thought unit one complete sentence with subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Tier 2

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses the specified topic and is organized with a solution related directly to the problem (e.g., problem/solution).	The essay includes at a minimum: an introduction that states both parts of the problem a body that relates how the solution can be applied to the problem a conclusion that states the problem and the solution	The essay includes at a minimum: an introduction that states the problem one solution that may not relate to the problem a conclusion that states the problem or the solution	The essay includes at a minimum some evidence related to the specified topic (i.e., introduction, ontopic problem/solution relationship, or conclusion).	There is no evidence of organization or the evidence is off topic.
Idea Development - The essay develops a topic, includes details to promote meaning and create clarity.	The essay includes at a minimum: a relevant detail to describe the problem a relevant detail to describe the solution	The essay includes at a minimum: a relevant detail to describe the problem or the solution	The essay includes at a minimum a detail or word that describes the problem or the solution.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The essay includes more than one sentence and at a minimum: end punctuation for more than one thought unit one complete sentence that expresses an idea with subject/verb agreement Ex: "The dog runs."	The essay includes at a minimum: end punctuation for one thought unit one complete sentence with or without subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Grade 11 Writing Scoring Rubrics

Tier 3

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses a specified claim supported with organized complex ideas.	The essay includes at a minimum: an introduction that states the claim supported by two rational reasons a body that includes two reasons related to the claim a conclusion that states the claim supported by two rational reasons	The essay includes at a minimum: an introduction that states the claim a body that includes one reason related to the claim a conclusion that states the claim with a rational reason or relevant evidence	The essay includes at a minimum some evidence related to the specified claim/topic (i.e., introduction, claim/topic, or conclusion).	There is no evidence of organization or the evidence is off topic.
Idea Development - The defended claim includes relevant evidence, and uses words, phrases, and clauses to clarify the relationship among claim, reasons and evidence.	The essay includes at a minimum: one piece of relevant evidence follows each of the two provided reasons words or phrases that connects each of the two reasons with relevant evidence	The essay includes at a minimum: a body with one reason and one piece of relevant evidence word or phrase that connects one reason with a piece of relevant evidence	The essay includes at a minimum a word related to the reason or a connecting word/phrase.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The essay includes more than one sentence and at a minimum: capitalization at the beginning of the majority of thought units end punctuation for the majority of thought units one complete sentence with subject/verb agreement	The essay includes at a minimum: capitalization to begin one thought unit end punctuation for one thought unit one complete sentence with subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

Tier 2

Rubric Elements	Full Evidence	Partial Evidence	Limited Evidence	Unrelated Evidence
Organization - The essay addresses a specified claim supported with organized complex ideas.	The essay includes at a minimum: an introduction that states the claim and a rational reason a conclusion that states the claim and the rational reason	The essay includes at a minimum: an introduction that states the claim or a reason a conclusion that states the claim or the reason	The essay includes at a minimum some evidence related to the specified claim/topic (i.e., introduction, claim/topic, or conclusion).	There is no evidence of organization or the evidence is off topic.
Idea Development - The defended claim includes relevant evidence, and uses words, phrases, and clauses to clarify the relationship among claim, reasons and evidence	The essay includes at a minimum: the body includes two relevant facts or examples words or phrases to connect the reason with one relevant facts or example	The essay includes at a minimum: the body includes only one relevant fact or example word or phrases to connect the reason with one fact or example	The essay includes at a minimum a word related to the reason.	There is no evidence of idea development or the evidence is off topic.
Conventions - Students use standard English conventions (subject/verb agreement).	The essay includes more than one sentence and at a minimum: end punctuation for more than one thought unit one complete sentence that expresses an idea with subject/verb agreement	The essay includes at a minimum: end punctuation for one thought unit one complete sentence with or without subject/verb agreement	The essay includes at a minimum one use of Standard English conventions.	There is no evidence of Standard English conventions.

APPENDIX G—ITEM-LEVEL CLASSICAL STATISTICS

Table G-1. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—ELA Grade 3

Item ID	$\begin{aligned} & \text { Item } \\ & \text { Type } \end{aligned}$	p-values	Item-Total Correlation	Omit Rates
113681A	MC	0.83	0.30	0
113682A	MC	0.79	0.34	0
113747A	MC	0.44	0.15	0
113749A	MC	0.56	0.21	1
114008A	MC	0.68	0.49	1
114010A	MC	0.70	0.40	1
114011A	MC	0.45	0.21	1
114957A	MC	0.79	0.41	1
114958A	MC	0.83	0.41	1
114960A	MC	0.58	0.20	1
115985A	MC	0.63	0.51	1
115986A	MC	0.54	0.50	1
115987A	MC	0.63	0.33	1
116202A	MC	0.53	0.34	1
116203A	MC	0.53	0.43	0
116204A	MC	0.60	0.47	1
116205A	MC	0.74	0.41	1
117686A	MC	0.68	0.44	1
117687A	MC	0.75	0.48	0
117688A	MC	0.35	0.18	1
120785A	MC	0.63	0.34	2
120786A	MC	0.42	-0.11	1
120787A	MC	0.62	0.33	2
120879A	MC	0.35	0.26	1
120880A	MC	0.50	0.22	1
120912A	MC	0.81	0.36	0
120914A	MC	0.64	0.27	0
120922A	MC	0.48	0.34	1
120926A	MC	0.52	0.18	0
120927A	MC	0.54	0.12	0
120967A	MC	0.86	0.38	1
121194A	MC	0.53	0.32	3
121423A	MC	0.63	0.29	3
121545A	MC	0.53	0.41	1
121726A	MC	0.61	0.39	1
121731A	MC	0.34	0.28	1
122070A	MC	0.55	0.43	1
124168A	MC	0.68	0.36	1
124170A	MC	0.54	0.34	0
124175A	MC	0.72	0.39	2
124181A	MC	0.74	0.37	0

MSAA MC items have either 2 or 3 options.

Table G-2. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—ELA Grade 4

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
113087A	MC	0.82	0.33	0
113088A	MC	0.85	0.30	0
113089A	MC	0.80	0.30	0
113090A	MC	0.63	0.21	0
113091A	MC	0.70	0.22	0
113092A	MC	0.75	0.27	0
113093A	MC	0.67	0.23	0
113094A	MC	0.62	0.18	1
113097A	MC	0.56	0.09	1
113098A	MC	0.66	0.23	1
113099A	MC	0.68	0.20	1
113100A	MC	0.47	0.16	1
113280A	MC	0.64	0.43	0
113281A	MC	0.55	0.36	0
113283A	MC	0.63	0.44	1
114053A	MC	0.60	0.47	0
114054A	MC	0.50	0.36	0
114055A	MC	0.48	0.25	0
114056A	MC	0.67	0.45	0
116574A	MC	0.82	0.38	1
116576A	MC	0.84	0.36	0
116577A	MC	0.83	0.30	1
116618A	MC	0.60	0.31	1
116620A	MC	0.58	0.30	1
116621A	MC	0.61	0.38	1
117323A	MC	0.50	0.26	0
117324A	MC	0.45	0.35	0
117326A	MC	0.49	0.15	1
121279A	MC	0.78	0.43	0
121426A	MC	0.75	0.45	0
121539A	MC	0.55	0.30	1
121550A	MC	0.58	0.35	1
121551A	MC	0.57	0.21	1
121570A	MC	0.68	0.23	1
121580A	MC	0.40	0.39	1
121985A	MC	0.46	0.20	0
121987A	MC	0.37	0.09	0
122582A	MC	0.53	0.16	0
124194A	MC	0.50	0.20	1
124196A	MC	0.58	0.32	1
124199A	MC	0.62	0.25	0
124205A	MC	0.57	0.37	0
112069	MC	0.45	0.28	1
$5 A M C$	Ma	$20 r 3$		

MSAA MC items have either 2 or 3 options.

Table G-3. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—ELA Grade 5

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
114072A	MC	0.88	0.28	0
114329A	MC	0.58	0.27	1
114331A	MC	0.53	0.18	1
114332A	MC	0.43	0.11	0
114338A	MC	0.49	0.09	3
114339A	MC	0.60	0.31	2
114340A	MC	0.63	0.29	2
114341A	MC	0.55	-0.07	2
115053A	MC	0.72	0.38	0
115054A	MC	0.83	0.37	1
115055A	MC	0.81	0.31	1
115056A	MC	0.71	0.35	1
117109A	MC	0.49	0.32	1
117110A	MC	0.33	0.13	1
117111A	MC	0.63	0.46	1
117112A	MC	0.45	0.30	3
117523A	MC	0.55	0.33	1
117524A	MC	0.48	0.30	1
117525A	MC	0.47	0.33	1
119271A	MC	0.63	0.47	1
119970A	MC	0.33	0.26	1
119971A	MC	0.41	0.22	1
119973A	MC	0.58	0.48	1
120909A	MC	0.58	0.43	1
120910A	MC	0.60	0.44	1
121222A	MC	0.77	0.41	1
121457A	MC	0.66	0.25	0
121458A	MC	0.52	0.09	0
121459A	MC	0.73	0.34	0
121478A	MC	0.58	0.40	1
121479A	MC	0.63	0.33	8
121564A	MC	0.55	0.27	1
121568A	MC	0.51	0.34	0
121571A	MC	0.44	0.20	1
121672A	MC	0.69	0.48	0
121733A	MC	0.44	0.05	0
122062A	MC	0.45	0.11	1
124213A	MC	0.42	0.34	0
124219A	MC	0.75	0.39	0
124228A	MC	0.55	0.20	0
124234A	MC	0.67	0.46	0
MSAA AC	ha	$20 r 3$	5.	

MSAA MC items have either 2 or 3 options.

Table G-4. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—ELA Grade 6

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
113612A	MC	0.55	0.31	1
113614A	MC	0.53	0.33	1
114380A	MC	0.72	0.48	1
114382A	MC	0.70	0.43	1
115183A	MC	0.59	0.39	1
115502A	MC	0.50	0.30	1
115503A	MC	0.55	0.42	1
119997A	MC	0.47	0.13	0
119998A	MC	0.61	0.27	0
119999A	MC	0.52	0.27	0
120000A	MC	0.52	0.16	0
120011A	MC	0.39	0.08	1
120012A	MC	0.50	0.07	0
120013A	MC	0.34	0.08	0
120014A	MC	0.52	0.14	0
120042A	MC	0.77	0.17	3
120043A	MC	0.67	0.19	1
120044A	MC	0.55	0.29	1
120389A	MC	0.86	0.35	1
120390A	MC	0.86	0.36	1
120391A	MC	0.80	0.45	1
120392A	MC	0.85	0.39	1
121225A	MC	0.56	0.28	1
121226A	MC	0.56	0.31	1
121349A	MC	0.35	0.15	0
121353A	MC	0.83	0.35	0
121358A	MC	0.55	0.21	0
121359A	MC	0.59	0.22	0
121373A	MC	0.51	0.25	1
121374A	MC	0.51	0.31	1
121375A	MC	0.62	0.18	1
121482A	MC	0.82	0.43	0
121483A	MC	0.75	0.45	1
121521A	MC	0.56	0.32	1
121522A	MC	0.40	0.30	1
121529A	MC	0.51	0.25	1
121802A	MC	0.59	0.38	1
121803A	MC	0.71	0.41	1
121804A	MC	0.56	0.42	1
122258A	MC	0.40	0.29	1
122263A	MC	0.38	0.28	1
124240A	MC	0.57	0.26	1
124242A	MC	0.62	0.47	1
124257A	MC	0.64	0.25	0
MC	0.47	0.19	1	
		$20 r 3$	0	

MSAA MC items have either 2 or 3 options.

Table G-5. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—ELA Grade 7

Item ID	$\begin{aligned} & \text { Item } \\ & \text { Type } \end{aligned}$	p-values	Item-Total Correlation	Omit Rates
114482A	MC	0.65	0.35	1
114483A	MC	0.69	0.50	0
114484A	MC	0.53	0.25	1
114643A	MC	0.70	0.43	1
114644A	MC	0.53	0.43	1
114645A	MC	0.55	0.46	1
114646A	MC	0.72	0.42	1
115372A	MC	0.48	0.10	1
115373A	MC	0.53	0.36	1
115431A	MC	0.62	0.49	1
115432A	MC	0.58	0.45	1
115433A	MC	0.63	0.41	1
120060A	MC	0.62	0.20	0
120061A	MC	0.67	0.32	0
120072A	MC	0.50	0.19	1
120073A	MC	0.43	0.07	1
120098A	MC	0.66	0.32	4
120099A	MC	0.67	0.36	2
120465A	MC	0.84	0.36	1
120467A	MC	0.60	0.17	1
121313A	MC	0.62	0.46	1
121343A	MC	0.49	0.24	1
121347A	MC	0.55	0.37	1
121421A	MC	0.74	0.40	1
121425A	MC	0.79	0.38	1
121490A	MC	0.64	0.29	0
121491A	MC	0.42	0.13	0
121493A	MC	0.59	0.13	2
121494A	MC	0.48	0.23	0
121495A	MC	0.33	0.06	0
121497A	MC	0.55	0.21	2
121505A	MC	0.70	0.33	2
121507A	MC	0.51	0.21	1
121509A	MC	0.59	0.06	1
121513A	MC	0.60	0.17	0
121871A	MC	0.66	0.43	1
121874A	MC	0.61	0.34	1
122235A	MC	0.45	0.16	1
122380A	MC	0.55	0.26	1
123641A	MC	0.57	0.20	0
123649A	MC	0.46	0.11	1
124269A	MC	0.70	0.23	1
124271A	MC	0.35	0.17	1
124284A	MC	0.62	0.41	0
124286A	MC	0.61	0.15	0

MSAA MC items have either 2 or 3 options.

Table G-6. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—ELA Grade 8

Item ID	$\begin{aligned} & \text { Item } \\ & \text { Type } \end{aligned}$	p-values	Item-Total Correlation	Omit Rates
114228A	MC	0.52	0.19	1
114229A	MC	0.51	0.23	1
114230A	MC	0.54	0.35	1
114231A	MC	0.49	0.26	1
114796A	MC	0.69	0.31	1
114797A	MC	0.86	0.34	1
114798A	MC	0.85	0.36	1
114799A	MC	0.83	0.41	1
114876A	MC	0.64	0.41	1
114877A	MC	0.38	0.16	1
114879A	MC	0.64	0.39	1
115285A	MC	0.56	0.43	1
115286A	MC	0.62	0.44	1
115288A	MC	0.67	0.34	1
118798A	MC	0.71	0.39	0
118800A	MC	0.48	0.28	1
121030A	MC	0.68	0.40	2
121031A	MC	0.46	0.10	1
121032A	MC	0.61	0.23	1
121033A	MC	0.53	0.04	1
121036A	MC	0.52	0.18	0
121037A	MC	0.74	0.32	0
121038A	MC	0.67	0.28	0
121040A	MC	0.39	0.21	0
121041A	MC	0.45	0.21	0
121042A	MC	0.62	0.19	0
121075A	MC	0.73	0.43	1
121078A	MC	0.76	0.51	1
121107A	MC	0.56	0.27	1
121148A	MC	0.38	0.11	0
121149A	MC	0.59	0.12	0
121164A	MC	0.65	0.14	0
121165A	MC	0.54	0.16	0
121202A	MC	0.48	0.37	1
121203A	MC	0.65	0.40	0
121205A	MC	0.64	0.46	0
121805A	MC	0.50	0.25	1
122082A	MC	0.52	0.31	1
122562A	MC	0.67	0.44	1
124300A	MC	0.65	0.32	1
124302A	MC	0.79	0.31	0
124309A	MC	0.54	0.31	1
124311A	MC	0.50	0.22	0

MSAA MC items have either 2 or 3 options.

Table G-7. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—ELA Grade 11

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
113726A	MC	0.46	0.26	9
113727A	MC	0.48	0.20	1
113728A	MC	0.66	0.49	1
114166A	MC	0.37	0.22	0
114167A	MC	0.70	0.25	0
114193A	MC	0.62	0.15	1
114194A	MC	0.65	0.34	1
114205A	MC	0.60	0.08	5
114207A	MC	0.60	0.28	2
114208A	MC	0.53	0.22	1
116323A	MC	0.66	0.48	1
116324A	MC	0.69	0.39	1
116325A	MC	0.47	0.26	1
116326A	MC	0.49	0.30	8
117167A	MC	0.55	0.41	0
117168A	MC	0.63	0.37	0
117169A	MC	0.40	0.12	1
119078A	MC	0.60	0.45	11
119080A	MC	0.66	0.47	1
119081A	MC	0.69	0.48	1
120148A	MC	0.81	0.30	1
120149A	MC	0.72	0.33	1
120150A	MC	0.70	0.33	1
120151A	MC	0.79	0.29	2
121065A	MC	0.36	0.01	1
121229A	MC	0.70	0.35	1
121695A	MC	0.54	0.31	0
121702A	MC	0.47	0.18	1
121703A	MC	0.65	0.34	1
121711A	MC	0.63	0.31	0
121714A	MC	0.70	0.29	0
121718A	MC	0.56	0.15	2
121719A	MC	0.49	-0.01	2
121745A	MC	0.51	0.24	1
121746A	MC	0.63	0.46	1
121875A	MC	0.59	0.31	1
121953A	MC	0.28	0.02	0
122000A	MC	0.61	0.47	1
122538A	MC	0.47	0.18	1
124319A	MC	0.64	0.13	1
124321A	MC	0.33	-0.02	0
124328A	MC	0.65	0.31	0
124334A	MC	0.63	0.45	1
SSAAC	H	$20 r 3$	5	

MSAA MC items have either 2 or 3 options.

Table G-8. 2016-17 MSAA: Item-Level Classical Test Theory Statistics-Mathematics Grade 3

Item ID	$\begin{aligned} & \text { Item } \\ & \text { Type } \end{aligned}$	p-values	Item-Total Correlation	Omit Rates
110842A	MC	0.61	0.37	1
110855A	MC	0.27	0.19	1
110864A	MC	0.46	0.03	0
110865A	MC	0.40	0.12	0
110866A	MC	0.36	-0.02	1
110873A	MC	0.32	0.32	1
110876A	MC	0.54	0.35	0
110920A	MC	0.43	0.30	0
110923A	MC	0.56	0.23	1
110928A	MC	0.34	0.25	1
110959A	MC	0.67	0.24	1
110964A	MC	0.52	0.06	0
110966A	MC	0.64	0.25	0
110974A	MC	0.30	0.28	0
110975A	MC	0.58	0.37	0
111376A	MC	0.61	0.15	1
111377A	MC	0.51	0.15	3
111382A	MC	0.70	0.35	0
111386A	MC	0.51	0.38	1
111390A	MC	0.46	0.12	1
111397A	MC	0.53	0.27	1
111399A	MC	0.61	0.08	1
111400A	MC	0.63	0.32	0
111411A	MC	0.40	0.03	1
111420A	MC	0.56	0.37	0
111425A	MC	0.93	0.28	0
111426A	MC	0.49	0.42	0
111432A	MC	0.45	0.37	0
111434A	MC	0.74	0.32	3
111435A	MC	0.35	0.08	2
111883A	MC	0.23	0.18	2
112544A	MC	0.60	0.13	1
112551A	MC	0.64	0.26	1
112552A	MC	0.69	0.28	0
112553A	MC	0.45	0.40	0
112555A	MC	0.69	0.32	1
112560A	MC	0.44	0.12	1
112564A	MC	0.63	0.26	1
112565A	MC	0.29	0.20	1
112566A	MC	0.42	0.37	0
112569A	MC	0.52	0.12	1
112570A	MC	0.43	0.25	0
112571A	MC	0.27	0.25	1
112575A	MC	0.58	0.36	2
112576A	MC	0.28	0.29	1
112585A	MC	0.27	0.18	1
112586A	MC	0.31	0.29	1
112595A	MC	0.53	0.47	1

continued

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
112615A	MC	0.57	0.26	1
112616A	MC	0.36	0.27	0
112622A	MC	0.39	-0.02	2
120682A	MC	0.82	0.26	0
122087A	CR	0.70	0.38	0
122090A	CR	0.59	0.44	1
122104A	CR	0.35	0.34	1

MSAA MC items have either 2 or 3 options.

Table G-9. 2016-17 MSAA: Item-Level Classical Test Theory Statistics-Mathematics Grade 4

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
111123A	MC	0.46	0.40	1
111124A	MC	0.31	0.37	1
111135A	MC	0.58	0.16	1
111136A	MC	0.47	0.37	1
111139A	MC	0.57	-0.20	1
111148A	MC	0.35	0.26	1
11161A	MC	0.32	0.14	1
111162A	MC	0.28	0.28	2
111166A	MC	0.50	0.35	1
111179A	MC	0.43	0.23	0
111185A	MC	0.44	0.25	1
111663A	MC	0.76	0.29	1
111667A	MC	0.73	0.18	1
111676A	MC	0.40	0.39	1
111677A	MC	0.47	0.36	1
111678A	MC	0.62	0.38	0
111682A	MC	0.29	0.35	2
111685A	MC	0.56	0.22	1
111686A	MC	0.45	0.26	1
111688A	MC	0.60	0.23	0
111695A	MC	0.59	-0.09	4
111696A	MC	0.49	0.32	0
111698A	MC	0.26	0.11	1
111705A	MC	0.48	0.13	1
111711A	MC	0.51	0.26	0
111712A	MC	0.48	0.24	0
111715A	MC	0.74	0.28	2
111716A	MC	0.43	0.35	1
111717A	MC	0.64	0.35	0
111721A	MC	0.38	0.30	1
111727A	MC	0.32	0.06	1
111728A	MC	0.57	-0.10	2
111731A	MC	0.40	0.33	1
112783A	MC	0.56	0.41	0
112788A	MC	0.59	0.22	0
				Continued

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
112794A	MC	0.44	0.29	1
112797A	MC	0.37	-0.13	1
112803A	MC	0.63	0.31	0
112812A	MC	0.43	0.28	0
112817A	MC	0.44	0.29	0
112818A	MC	0.27	0.22	0
112824A	MC	0.41	0.28	1
112828A	MC	0.48	-0.08	2
112833A	MC	0.43	0.24	1
112839A	MC	0.43	0.14	0
120551A	MC	0.32	0.20	0
121661A	MC	0.42	0.22	0
121663A	MC	0.31	0.32	1
121665A	MC	0.29	0.38	1
121691A	MC	0.36	0.23	1
121737A	CR	0.41	0.18	1
122265A	CR	0.33	0.13	0
122267A	CR	0.49	0.37	1
122368A	CR	0.33	0.34	0
122432A	CR	0.25	0.32	1

MSAA MC items have either 2 or 3 options.

Table G-10. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—Mathematics Grade 5

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
111234A	MC	0.61	0.16	0
111242A	MC	0.51	0.18	2
111243A	MC	0.46	0.45	1
111244A	MC	0.55	0.45	0
111258A	MC	0.22	0.13	0
111259A	MC	0.38	0.13	1
111262A	MC	0.63	0.18	1
111275A	MC	0.53	-0.10	2
111276A	MC	0.49	0.23	1
111277A	MC	0.53	0.29	0
111294A	MC	0.68	0.29	0
111295A	MC	0.41	0.30	1
111298A	MC	0.31	0.22	1
111299A	MC	0.38	0.19	0
111303A	MC	0.52	0.24	1
111308A	MC	0.36	0.06	0
112335A	MC	0.47	0.07	2
112342A	MC	0.43	0.07	1
112346A	MC	0.69	0.30	1
112348A	MC	0.56	0.33	0
112352A	MC	0.46	0.10	2
112354A	MC	0.20	0.13	1

continued

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
112358A	MC	0.27	0.19	1
112359A	MC	0.27	0.25	1
112363A	MC	0.36	0.28	1
112364A	MC	0.35	0.24	0
112365A	MC	0.38	0.05	0
112368A	MC	0.36	0.33	2
112369A	MC	0.21	0.19	1
112372A	MC	0.73	0.35	1
112373A	MC	0.70	0.30	0
112377A	MC	0.71	0.31	2
112384A	MC	0.34	0.29	1
112385A	MC	0.53	0.38	0
112386A	MC	0.50	0.13	0
112392A	MC	0.29	0.21	0
112408A	MC	0.30	0.19	1
112410A	MC	0.67	0.30	0
112416A	MC	0.51	-0.01	1
113856A	MC	0.43	0.16	0
113862A	MC	0.23	0.16	2
113863A	MC	0.46	0.01	1
113867A	MC	0.35	0.15	0
113872A	MC	0.22	0.07	1
113877A	MC	0.32	0.05	1
113878A	MC	0.43	-0.12	1
113883A	MC	0.55	0.23	0
113889A	MC	0.48	0.13	2
113892A	MC	0.52	0.26	0
113899A	MC	0.70	0.22	1
113902A	MC	0.45	0.29	1
120724A	MC	0.08	0.11	1
120737A	CR	0.35	0.43	0
120739A	CR	0.25	0.43	1
121514A	CR	0.57	0.34	0
MSAA	ha	$20 r 30$		

MSAA MC items have either 2 or 3 options.

Table G-11. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—Mathematics Grade 6

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
110891A	MC	0.74	0.32	0
110903A	MC	0.79	0.31	1
110909A	MC	0.65	0.13	1
110910A	MC	0.48	0.24	1
110938A	MC	0.37	0.06	1
110939A	MC	0.44	0.24	1
110944A	MC	0.70	0.39	1
110977A	MC	0.38	0.11	2
110980A	MC	0.60	0.37	1

Item ID	$\begin{aligned} & \text { Item } \\ & \text { Type } \end{aligned}$	p-values	Item-Total Correlation	Omit Rates
110981A	MC	0.58	0.37	0
110984A	MC	0.33	0.27	0
110986A	MC	0.56	0.35	1
110990A	MC	0.49	0.34	1
110991A	MC	0.47	0.30	1
110993A	MC	0.61	0.27	0
110996A	MC	0.32	0.15	1
111022A	MC	0.48	0.41	0
111025A	MC	0.45	0.27	1
111038A	MC	0.46	0.14	1
111441A	MC	0.32	0.00	2
111445A	MC	0.63	0.43	0
111450A	MC	0.77	0.30	1
111452A	MC	0.30	0.06	2
111455A	MC	0.62	0.38	1
111456A	MC	0.48	0.37	0
111465A	MC	0.58	0.33	0
111479A	MC	0.68	0.44	0
111482A	MC	0.45	0.21	1
111487A	MC	0.49	0.10	1
111496A	MC	0.57	0.11	1
111507A	MC	0.39	0.15	1
111508A	MC	0.42	0.08	1
111514A	MC	0.55	0.38	1
111517A	MC	0.63	0.46	1
111518A	MC	0.56	0.38	0
111630A	MC	0.77	0.34	1
112645A	MC	0.59	0.39	0
112655A	MC	0.40	0.26	0
112656A	MC	0.58	0.14	5
112658A	MC	0.61	0.26	0
112663A	MC	0.36	0.05	1
112667A	MC	0.32	-0.02	1
112671A	MC	0.53	0.23	2
112672A	MC	0.65	0.36	1
112676A	MC	0.56	0.04	1
112679A	MC	0.77	0.36	0
112692A	MC	0.92	0.26	0
112699A	MC	0.54	0.34	0
112956A	MC	0.38	0.11	1
120494A	MC	0.55	0.38	1
120854A	MC	0.67	0.37	0
120855A	MC	0.39	0.09	2
121487A	MC	0.63	0.43	0
121520A	MC	0.29	0.09	0
514235	MC	0.43	0.27	1

MSAA MC items have either 2 or 3 options.

Table G-12. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—Mathematics Grade 7

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
111048A	MC	0.56	0.38	0
111055A	MC	0.45	0.29	1
111066A	MC	0.34	0.00	1
111067A	MC	0.47	0.31	0
111069A	MC	0.60	0.20	1
111070A	MC	0.51	0.28	1
111071A	MC	0.53	0.41	0
11075A	MC	0.85	0.35	0
111076A	MC	0.44	0.26	1
111080A	MC	0.44	0.29	1
111085A	MC	0.53	0.26	0
111093A	MC	0.50	0.32	1
111094A	MC	0.31	0.05	3
111098A	MC	0.71	0.25	1
111100A	MC	0.33	0.13	3
111104A	MC	0.47	0.24	1
111105A	MC	0.56	0.32	0
111106A	MC	0.34	0.33	0
111119A	MC	0.34	0.09	1
111127A	MC	0.48	0.32	1
111130A	MC	0.55	0.03	3
111131A	MC	0.38	0.18	1
111641A	MC	0.57	0.21	1
111734A	MC	0.57	0.40	1
111738A	MC	0.62	0.07	1
111744A	MC	0.55	0.19	1
111748A	MC	0.72	0.15	1
111749A	MC	0.90	0.25	0
111758A	MC	0.68	0.20	1
111761A	MC	0.40	0.22	0
111766A	MC	0.64	0.41	0
111769A	MC	0.60	0.34	1
111775A	MC	0.37	0.10	0
111778A	MC	0.81	0.28	1
111779A	MC	0.43	0.20	1
111780A	MC	0.24	-0.02	3
111795A	MC	0.44	0.44	0
111796A	MC	0.62	0.33	1
111799A	MC	0.41	0.10	1
111804A	MC	0.41	0.12	1
111841A	MC	0.48	0.29	0
112852A	MC	0.48	0.11	2
112871A	MC	0.34	-0.04	1
MC	0.49	0.20	1	
			continued	

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
112880A	MC	0.57	-0.02	3
112882A	MC	0.49	0.28	1
112886A	MC	0.35	0.04	1
112887A	MC	0.53	0.35	0
112890A	MC	0.30	0.08	3
112899A	MC	0.64	0.22	1
112901A	MC	0.45	0.21	0
112910A	MC	0.67	0.36	0
112911A	MC	0.45	0.38	0
113101A	MC	0.71	0.39	0

MSAA MC items have either 2 or 3 options.
Table G-13. 2016-17 MSAA: Item-Level Classical Test Theory Statistics—Mathematics Grade 8

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
111247A	MC	0.70	0.38	1
111281A	MC	0.59	0.31	1
111283A	MC	0.30	0.18	0
111286A	MC	0.33	0.21	1
111335A	MC	0.36	0.26	1
111339A	MC	0.47	0.35	0
111352A	MC	0.73	0.34	1
111560A	MC	0.45	0.40	1
111562A	MC	0.75	0.00	1
111581A	MC	0.43	0.18	1
111583A	MC	0.44	0.34	0
111593A	MC	0.31	0.10	2
111594A	MC	0.64	0.22	0
111597A	MC	0.42	0.26	3
111615A	MC	0.58	0.31	1
111622A	MC	0.59	0.33	0
112452A	MC	0.43	-0.03	1
112460A	MC	0.43	0.30	1
112466A	MC	0.51	0.31	1
112470A	MC	0.60	0.23	0
112475A	MC	0.79	0.35	0
112476A	MC	0.46	0.06	1
112477A	MC	0.39	0.25	0
112480A	MC	0.36	0.14	1
112486A	MC	0.42	0.32	0
112490A	MC	0.68	0.25	0
112491A	MC	0.33	0.16	2
112494A	MC	0.73	0.18	1
112499A	MC	0.50	0.35	2
112500A	MC	0.35	0.13	3
112506A	MC	0.63	0.26	0
112509A	MC	0.58	0.30	1
112516A	MC	0.48	0.39	1
113909A	MC	0.52	0.30	1
				continued

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
113917A	MC	0.70	0.36	0
113918A	MC	0.55	0.22	1
113932A	MC	0.49	0.40	0
113933A	MC	0.54	0.42	0
113937A	MC	0.43	0.38	0
113943A	MC	0.32	0.28	1
113952A	MC	0.32	0.18	1
113957A	MC	0.35	0.11	1
113959A	MC	0.45	0.36	0
113963A	MC	0.46	0.37	1
113968A	MC	0.28	0.15	1
113973A	MC	0.53	0.31	1
113978A	MC	0.39	0.22	1
117071A	MC	0.59	-0.13	0
117072A	MC	0.47	0.35	1
120560A	MC	0.64	0.35	0
120568A	MC	0.63	0.26	1
120571A	MC	0.49	0.22	1
122051A	CR	0.56	0.28	0
122099A	MC	0.33	0.15	2
519587	MC	0.28	0.25	1
MSAA Mit	hav	$20 r 3$		

MSAA MC items have either 2 or 3 options.

Table G-14. 2016-17 MSAA: Item-Level Classical Test Theory Statistics-Mathematics Grade 11

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
110843A	MC	0.48	0.40	0
110858A	MC	0.52	0.29	0
110867A	MC	0.65	0.06	2
110881A	MC	0.49	0.33	2
110882A	MC	0.38	-0.06	1
110913A	MC	0.45	0.35	0
110914A	MC	0.63	0.48	0
110915A	MC	0.71	0.34	1
110921A	MC	0.52	0.35	0
110936A	MC	0.60	0.31	1
110968A	MC	0.52	0.16	0
111000A	MC	0.66	0.36	0
111002A	MC	0.58	0.29	0
111016A	MC	0.35	0.10	2
111024A	MC	0.69	0.24	4
111042A	MC	0.42	-0.11	2
111109A	MC	0.37	-0.02	2
111533A	MC	0.52	0.13	3
111537A	MC	0.47	0.36	0
111538A	MC	0.46	0.46	0
111544A	MC	0.33	0.17	2
				continued

Item ID	Item Type	p-values	Item-Total Correlation	Omit Rates
111545A	MC	0.37	0.12	0
111546A	MC	0.53	0.07	2
111548A	MC	0.38	0.26	1
111553A	MC	0.39	0.35	1
111557A	MC	0.33	0.12	1
111809A	MC	0.37	-0.15	2
111810A	MC	0.70	0.45	0
111813A	MC	0.69	0.26	1
111815A	MC	0.47	0.43	1
111818A	MC	0.48	0.40	6
111819A	MC	0.28	0.10	1
111824A	MC	0.39	0.01	1
111828A	MC	0.38	0.30	2
111829A	MC	0.44	0.39	0
111830A	MC	0.53	0.06	5
111833A	MC	0.43	0.24	2
111840A	MC	0.36	0.11	2
112701A	MC	0.47	0.17	1
112702A	MC	0.59	0.43	0
112708A	MC	0.35	0.14	1
112709A	MC	0.37	0.34	0
112717A	MC	0.34	0.18	5
112722A	MC	0.45	0.20	1
112727A	MC	0.59	0.38	1
112732A	MC	0.40	0.09	2
112733A	MC	0.48	0.28	1
112743A	MC	0.31	0.13	4
112744A	MC	0.64	0.34	0
112924A	MC	0.66	0.31	1
112940A	MC	0.56	0.37	0
112945A	MC	0.45	0.01	1
112946A	MC	0.48	0.29	3
122021A	CR	0.39	0.15	1
122055A	CR	0.45	0.21	0
MSAA A	A	$20 r 3$	0	

MSAA MC items have either 2 or 3 options.

APPENDIX H—DIFFERENTIAL ITEM FUNCTIONING RESULTS

Table H-1. 2016-17 MSAA: Number of Items Classified as "Low" or "High" DIF,

Grade	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
03	Male	Female	55	3	1	2	0	0	0
	Non-EconDis	EconDis	55	5	3	2	0	0	0
	Non-LEP	LEP	15	3	1	2	1	1	0
	White	Black or African American	55	10	8	2	2	2	0
		Hispanic or Latino	55	6	4	2	0	0	0
04	Male	Female	55	2	1	1	0	0	0
	Non-EconDis	EconDis	55	6	5	1	2	0	2
	Non-LEP	LEP	15	2	1	1	1	1	0
	White	Black or African American	55	13	10	3	1	1	0
		Hispanic or Latino	55	7	4	3	1	0	1
05	Male	Female	55	5	3	2	0	0	0
	Non-EconDis	EconDis	55	9	1	8	0	0	0
	Non-LEP	LEP	15	5	2	3	1	0	1
	White	Black or African American	55	12	5	7	2	2	0
		Hispanic or Latino	55	6	4	2	2	2	0
06		Female	55	2	1	1	1	1	0
	Non-EconDis	EconDis	55	5	2	3	0	0	0
	Non-LEP	LEP	15	4	2	2	1	1	0
	White	Black or African American	55	11	5	6	0	0	0
		Hispanic or Latino	55	4	1	3	1	1	0
07	Male	Female	54	1	1	0	0	0	0
	Non-EconDis	EconDis	54	10	5	5	2	0	2
	White	Black or African American	54	9	7	2	0	0	0
		Hispanic or Latino	54	2	1	1	1	1	0
08	Male	Female	55	6	2	4	0	0	0
	Non-EconDis	EconDis	55	4	0	4	0	0	0
	White	Black or African American	55	4	3	1	2	1	1
		Hispanic or Latino	55	7	4	3	0	0	0
11	Male	Female	55	6	1	5	0	0	0
	Non-EconDis	EconDis	55	7	3	4	0	0	0
	White	Black or African American	55	9	6	3	4	2	2
		Hispanic or Latino	55	3	1	2	1	0	1

Table H-2. 2016-17 MSAA: Number of Items Classified as "Low" or "High" DIF, Overall and by Group Favored-ELA

Grade	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
03	Male	Female	41	2	0	2	0	0	0
	Non-EconDis	EconDis	41	1	0	1	0	0	0
	Non-LEP	LEP	27	5	5	0	0	0	0
	White	Black or African American	41	4	4	0	1	0	1
		Hispanic or Latino	41	5	4	1	0	0	0
04	Male	Female	43	7	6	1	0	0	0
	Non-EconDis	EconDis	43	5	2	3	0	0	0
	Non-LEP	LEP	26	5	3	2	1	0	1
	White	Black or African American	43	5	1	4	4	1	3
		Hispanic or Latino	43	7	3	4	0	0	0
05	Male	Female	41	3	1	2	1	1	0
	Non-EconDis	EconDis	41	2	1	1	2	0	2
	Non-LEP	LEP	27	8	5	3	0	0	0
	White	Black or African American	41	1	0	1	0	0	0
		Hispanic or Latino	41	4	1	3	0	0	0
06	Male	Female	45	3	2	1	0	0	0
	Non-EconDis	EconDis	45	4	1	3	0	0	0
	Non-LEP	LEP	25	4	3	1	1	1	0
	White	Black or African American	39	4	1	3	1	1	0
		Hispanic or Latino	45	4	4	0	1	0	1
07	Male	Female	45	5	3	2	1	1	0
	Non-EconDis	EconDis	45	5	1	4	1	1	0
	White	Black or African American	45	7	6	1	0	0	0
		Hispanic or Latino	45	4	1	3	1	1	0
08	Male	Female	43	3	1	2	1	1	0
	Non-EconDis	EconDis	43	2	0	2	0	0	0
	White	Black or African American	43	5	4	1	0	0	0
		Hispanic or Latino	43	5	4	1	2	2	0
11	Male	Female	43	3	2	1	0	0	0
	Non-EconDis	EconDis	43	7	2	5	1	0	1
	White	Black or African American	43	7	3	4	1	0	1
		Hispanic or Latino	43	5	2	3	1	1	0

Table H-3. 2016-17 MSAA: DIF by Path— Mathematics Grade 3

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	35	2	1	1	0	0	0
	Non-EconDis	EconDis	35	2	0	2	0	0	0
	Non-LEP	LEP	15	3	1	2	1	1	0
	White	Black or African American	35	6	5	1	2	2	0
		Hispanic or Latino	35	4	3	1	0	0	0
B	Male	Female	35	0	0	0	0	0	0
	Non-EconDis	EconDis	35	3	2	1	0	0	0
	Non-LEP	LEP	15	3	1	2	1	1	0
	White	Black or African American	35	6	4	2	0	0	0
		Hispanic or Latino	35	2	1	1	0	0	0
C	Male	Female	35	1	0	1	0	0	0
	Non-EconDis	EconDis	35	4	3	1	0	0	0
	Non-LEP	LEP	15	3	1	2	1	1	0
	White	Black or African American	35	5	4	1	0	0	0
		Hispanic or Latino	35	2	1	1	0	0	0

Table H-4. 2016-17 MSAA: DIF by Path— Mathematics Grade 4

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	35	2	1	1	0	0	0
	Non-EconDis	EconDis	35	3	2	1	1	0	1
	Non-LEP	LEP	15	2	1	1	1	1	0
	White	Black or African American	35	10	9	1	0	0	0
		Hispanic or Latino	35	2	2	0	1	0	1

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
B	Male	Female	35	1	1	0	0	0	0
	Non-EconDis	EconDis	35	5	4	1	2	0	2
	Non-LEP	LEP	15	2	1	1	1	1	0
	White	Black or African American	35	7	6	1	1	1	0
		Hispanic or Latino	35	2	1	1	0	0	0
C	Male	Female	35	0	0	0	0	0	0
	Non-EconDis	EconDis	35	3	3	0	2	0	2
	Non-LEP	LEP	15	2	1	1	1	1	0
	White	Black or African American	35	7	4	3	1	1	0
		Hispanic or Latino	35	5	2	3	0	0	0

Table H-5. 2016-17 MSAA: DIF by Path— Mathematics Grade 5

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	35	3	2	1	0	0	0
	Non-EconDis	EconDis	35	5	0	5	0	0	0
	Non-LEP	LEP	15	5	2	3	1	0	1
	White	Black or African American	35	4	1	3	1	1	0
		Hispanic or Latino	35	2	2	0	0	0	0
B	Male	Female	35	1	0	1	0	0	0
	Non-EconDis	EconDis	35	4	0	4	0	0	0
	Non-LEP	LEP	15	5	2	3	1	0	1
	White	Black or African American	35	3	2	1	0	0	0
		Hispanic or Latino	35	4	3	1	0	0	0
C	Male	Female	35	2	1	1	0	0	0
	Non-EconDis	EconDis	35	6	1	5	0	0	0
	Non-LEP	LEP	15	5	2	3	1	0	1
	White	Black or African American	35	8	4	4	1	1	0
		Hispanic or Latino	35	5	3	2	2	2	0

Table H-6. 2016-17 MSAA: DIF by Path— Mathematics Grade 6

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	35	1	0	1	0	0	0
	Non-EconDis	EconDis	35	5	2	3	0	0	0
	Non-LEP	LEP	15	4	2	2	1	1	0
	White	Black or African American	35	8	4	4	0	0	0
		Hispanic or Latino	35	3	1	2	1	1	0
B	Male	Female	35	1	0	1	0	0	0
	Non-EconDis	EconDis	35	2	1	1	0	0	0
	Non-LEP	LEP	15	4	2	2	1	1	0
	White	Black or African American	35	8	5	3	0	0	0
		Hispanic or Latino	35	3	1	2	1	1	0
C	Male	Female	35	1	1	0	1	1	0
	Non-EconDis	EconDis	35	0	0	0	0	0	0
	Non-LEP	LEP	15	4	2	2	1	1	0
	White	Black or African American	35	4	2	2	0	0	0
		Hispanic or Latino	35	1	0	1	1	1	0

Table H-7. 2016-17 MSAA: DIF by Path— Mathematics Grade 7

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	35	1	1	0	0	0	0
	Non-EconDis	EconDis	35	4	2	2	2	0	2
	White	Black or African American	35	6	6	0	0	0	0
		Hispanic or Latino	35	2	1	1	0	0	0
B	Male	Female	35	0	0	0	0	0	0
	Non-EconDis	EconDis	35	4	1	3	1	0	1
	White	Black or African American	35	5	3	2	0	0	0
		Hispanic or Latino	35	1	1	0	0	0	0

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
C	Male	Female	34	0	0	0	0	0	0
	Non-EconDis	EconDis	34	7	3	4	0	0	0
	White	Black or African American	34	4	2	2	0	0	0
		Hispanic or Latino	34	1	1	0	1	1	0

Table H-8. 2016-17 MSAA: DIF by Path— Mathematics Grade 8

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	35	4	2	2	0	0	0
	Non-EconDis	EconDis	35	2	0	2	0	0	0
	White	Black or African American	35	2	2	0	0	0	0
		Hispanic or Latino	35	3	2	1	0	0	0
B	Male	Female	35	4	2	2	0	0	0
	Non-EconDis	EconDis	35	3	0	3	0	0	0
	White	Black or African American	35	1	1	0	0	0	0
		Hispanic or Latino	35	2	1	1	0	0	0
C	Male	Female	35	4	1	3	0	0	0
	Non-EconDis	EconDis	35	3	0	3	0	0	0
	White	Black or African American	35	2	1	1	2	1	1
		Hispanic or Latino	35	4	2	2	0	0	0

Table H-9. 2016-17 MSAA: DIF by Path— Mathematics Grade 11

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	35	5	1	4	0	0	0
	Non-EconDis	EconDis	35	6	3	3	0	0	0
	White	Black or African American	35	6	4	2	3	2	1
		Hispanic or Latino	35	2	0	2	0	0	0
B	Male	Female	35	2	1	1	0	0	0
	Non-EconDis	EconDis	35	3	1	2	0	0	0
	White	Black or African American	35	5	2	3	1	0	1
		Hispanic or Latino	35	2	0	2	0	0	0
C	Male	Female	35	1	0	1	0	0	0
	Non-EconDis	EconDis	35	1	0	1	0	0	0
	White	Black or African American	35	5	4	1	1	0	1
		Hispanic or Latino	35	2	1	1	1	0	1

Table H-10. 2016-17 MSAA: DIF by Path— ELA Grade 3

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	32	1	0	1	0	0	0
	Non-EconDis	EconDis	32	1	0	1	0	0	0
	Non-LEP	LEP	27	5	5	0	0	0	0
	White	Black or African American	32	3	3	0	0	0	0
		Hispanic or Latino	32	5	4	1	0	0	0
B	Male	Female	32	1	0	1	0	0	0
	Non-EconDis	EconDis	32	0	0	0	0	0	0
	Non-LEP	LEP	27	5	5	0	0	0	0

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
B	White	Black or African American	32	4	4	0	1	0	1
		Hispanic or Latino	32	3	3	0	0	0	0
C	Male	Female	32	0	0	0	0	0	0
	Non-EconDis	EconDis	32	0	0	0	0	0	0
	Non-LEP	LEP	27	5	5	0	0	0	0
	White	Black or African American	32	3	3	0	0	0	0
		Hispanic or Latino	32	3	3	0	0	0	0

Table H-11. 2016-17 MSAA: DIF by Path—ELA Grade 4

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	32	5	4	1	0	0	0
	Non-EconDis	EconDis	32	4	1	3	0	0	0
	Non-LEP	LEP	26	5	3	2	1	0	1
	White	Black or African American	32	2	1	1	4	1	3
		Hispanic or Latino	32	4	2	2	0	0	0
B	Male	Female	32	5	4	1	0	0	0
	Non-EconDis	EconDis	32	1	0	1	0	0	0
	Non-LEP	LEP	26	5	3	2	1	0	1
	White	Black or African American	32	4	1	3	2	1	1
		Hispanic or Latino	32	4	3	1	0	0	0
C	Male	Female	32	2	2	0	0	0	0
	Non-EconDis	EconDis	32	2	1	1	0	0	0
	Non-LEP	LEP	26	5	3	2	1	0	1
	White	Black or African American	32	3	1	2	1	1	0
		Hispanic or Latino	32	3	2	1	0	0	0

Table H-12. 2016-17 MSAA: DIF by Path— ELA Grade 5

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	32	2	1	1	0	0	0
	Non-EconDis	EconDis	32	2	1	1	1	0	1
	Non-LEP	LEP	27	8	5	3	0	0	0
	White	Black or African American	32	0	0	0	0	0	0
		Hispanic or Latino	32	2	1	1	0	0	0
B	Male	Female	32	2	1	1	1	1	0
	Non-EconDis	EconDis	32	2	1	1	1	0	1
	Non-LEP	LEP	27	8	5	3	0	0	0
	White	Black or African American	32	0	0	0	0	0	0
		Hispanic or Latino	32	2	1	1	0	0	0
C	Male	Female	32	1	1	0	0	0	0
	Non-EconDis	EconDis	32	2	1	1	0	0	0
	Non-LEP	LEP	27	8	5	3	0	0	0
	White	Black or African American	32	1	0	1	0	0	0
		Hispanic or Latino	32	2	1	1	0	0	0

Table H-13. 2016-17 MSAA: DIF by Path— ELA Grade 6

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	32	1	0	1	0	0	0
	Non-EconDis	EconDis	32	1	0	1	0	0	0
	Non-LEP	LEP	25	4	3	1	1	1	0
	White	Black or African American	32	2	1	1	0	0	0
		Hispanic or Latino	32	2	2	0	0	0	0
B	Male	Female	32	2	1	1	0	0	0
	Non-EconDis	EconDis	32	4	1	3	0	0	0
	Non-LEP	LEP	25	4	3	1	1	1	0
									continu

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
B	White	Black or African American	26	2	1	1	0	0	0
		Hispanic or Latino	32	2	2	0	1	0	1
C	Male	Female	32	2	1	1	0	0	0
	Non-EconDis	EconDis	32	0	0	0	0	0	0
	Non-LEP	LEP	25	4	3	1	1	1	0
	White	Black or African American	32	4	1	3	1	1	0
		Hispanic or Latino	32	2	2	0	0	0	0

Table H-14. 2016-17 MSAA: DIF by Path—ELA Grade 7

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	32	3	1	2	1	1	0
	Non-EconDis	EconDis	32	3	0	3	0	0	0
	White	Black or African American	32	4	4	0	0	0	0
		Hispanic or Latino	32	2	0	2	1	1	0
B	Male	Female	32	2	0	2	0	0	0
	Non-EconDis	EconDis	32	3	1	2	1	1	0
	White	Black or African American	32	2	2	0	0	0	0
		Hispanic or Latino	32	3	1	2	1	1	0
C	Male	Female	32	4	2	2	0	0	0
	Non-EconDis	EconDis	32	0	0	0	0	0	0
	White	Black or African American	32	3	2	1	0	0	0
		Hispanic or Latino	32	1	0	1	1	1	0

Table H-15. 2016-17 MSAA: DIF by Path— ELA Grade 8

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
A	Male	Female	32	1	1	0	0	0	0
	Non-EconDis	EconDis	32	2	0	2	0	0	0
	White	Black or African American	32	1	1	0	0	0	0
		Hispanic or Latino	32	2	2	0	1	1	0
B	Male	Female	32	2	0	2	1	1	0
	Non-EconDis	EconDis	32	2	0	2	0	0	0
	White	Black or African American	32	2	1	1	0	0	0
		Hispanic or Latino	32	4	3	1	1	1	0
C	Male	Female	32	0	0	0	0	0	0
	Non-EconDis	EconDis	32	2	0	2	0	0	0
	White	Black or African American	32	4	4	0	0	0	0
		Hispanic or Latino	32	3	3	0	2	2	0

Table H-16. 2016-17 MSAA: DIF by Path— ELA Grade 11

Path	Group		Number of Items	Number "Low"			Number "High"		
	Reference	Focal		Total	Favoring		Total	Favoring	
					Reference	Focal		Reference	Focal
C	Non-EconDis	EconDis	32	2	0	2	0	0	0
	White	Black or African American	32	4	2	2	0	0	0
		Hispanic or Latino	32	2	1	1	0	0	0

APPENDIX I—ITEM RESPONSE THEORY PARAMETERS

Table l-1. 2016-17 MSAA: IRT Parameters for ELA Grade 3

IREF	a	SE (a)	b	$S E(b)$
113681A	0.90739	0.06572	-0.52310	0.05392
113682A	0.46798	0.04716	-0.77351	0.10761
113747A	0.79636	0.05854	-0.11972	0.05538
113749A	1.00539	0.07112	-0.50083	0.05034
114008A	0.93279	0.04053	-0.66579	0.03040
114010A	0.53212	0.03269	-1.24036	0.07267
114011A	0.18812	0.02325	0.80017	0.15500
114957A	1.10430	0.05096	-1.12593	0.03722
114958A	0.93212	0.04780	-1.37103	0.05209
114960A	0.51408	0.03037	-0.72934	0.05324
115985A	0.72259	0.03486	-0.63105	0.03707
115986A	0.80025	0.03583	-0.38746	0.03040
115987A	0.36194	0.02765	-0.99291	0.08640
116202A	0.52082	0.02953	-0.19116	0.04248
116203A	0.83544	0.03634	-0.27818	0.02850
116204A	1.05454	0.04267	-0.46854	0.02490
116205A	0.60777	0.03474	-1.20922	0.06367
117686A	0.82679	0.06911	-1.08955	0.07922
117687A	0.88668	0.07430	-1.15409	0.07836
117688A	0.34218	0.04119	0.99909	0.15870
120785A	0.93825	0.04469	-1.58716	0.05270
120786A	1.04434	0.03731	-0.70349	0.02551

IREF	a	$S E(a)$	b	$S E(b)$
120787A	0.95053	0.04337	-1.47134	0.04728
120879A	0.58802	0.03099	0.48916	0.04606
120880A	0.23251	0.02428	-0.07651	0.09067
120912A	0.65621	0.05619	-0.82557	0.08188
120914A	0.24912	0.03683	-0.24789	0.15936
120922A	0.52534	0.02949	0.00291	0.04229
120926A	0.35010	0.04139	-0.19220	0.11521
120927A	0.35438	0.04158	-0.21981	0.11457
120967A	0.90795	0.04981	-1.57280	0.06308
121194A	0.49473	0.04684	-0.40493	0.08752
121423A	0.81602	0.03931	-1.59544	0.05809
121545A	0.72026	0.03343	-0.08615	0.03183
121726A	0.47039	0.02977	-0.86858	0.06294
121731A	0.38373	0.02780	0.97882	0.09051
122070A	0.52193	0.04845	-0.55211	0.08797
124168A	0.79997	0.04377	-1.47679	0.06337
124170A	0.35629	0.02664	-0.26459	0.06121
124175A	0.86330	0.04170	-1.06841	0.04305
124181A	0.51623	0.02976	-0.43410	0.04561

Table I-2. 2016-17 MSAA: IRT Parameters for ELA Grade 4

IREF	a	SE (a)	b	SE (b)	IREF	a	SE (a)	b	SE (b)
113087A	1.02037	0.06493	-0.17046	0.04395	113094A	1.14882	0.07399	-0.45000	0.04203
113088A	0.89163	0.06055	-0.39826	0.05067	113097A	1.32198	0.09599	-0.95563	0.04710
113089A	0.97390	0.06297	-0.20043	0.04562	113098A	0.58399	0.06253	-1.93674	0.17733
113090A	0.43907	0.04215	0.14744	0.08815	113099A	0.75371	0.07070	-1.59799	0.11845
113091A	1.13477	0.07240	-0.37040	0.04166	113100A	1.48988	0.10437	-0.85444	0.04024
113092A	1.08641	0.07491	-0.73289	0.04879	113280A	0.71703	0.03641	-0.67230	0.03844
113093A	0.86054	0.06167	-0.62949	0.05637	113281A	0.72505	0.03543	-0.35335	0.03190

IREF	a	$S E(a)$	b	$S E(b)$
113283A	0.84332	0.03900	-0.60597	0.03188
114053A	1.09370	0.04398	-0.40338	0.02293
114054A	0.70565	0.03472	-0.18928	0.03134
114055A	0.37949	0.02906	0.12309	0.05733
114056A	0.85743	0.04021	-0.74204	0.03457
116574A	0.95039	0.04901	-1.27590	0.05024
116576A	0.91807	0.04864	-1.33452	0.05435
116577A	0.67293	0.04300	-1.66821	0.08940
116618A	0.35084	0.03995	-0.62520	0.12526
116620A	0.33525	0.03949	-0.70961	0.13563
116621A	0.52870	0.04747	-0.80075	0.09400
117323A	0.31797	0.03826	-0.02139	0.11766
117324A	0.58505	0.04702	0.18866	0.06938
117326A	0.12577	0.02606	0.91047	0.34483
121279A	1.28075	0.05624	-0.97531	0.03026
121426A	1.22016	0.05190	-0.84409	0.02795

IREF	a	$S E(a)$	b	$S E(b)$
121539A	0.30471	0.03805	-0.38019	0.12963
121550A	0.72513	0.03559	-0.41150	0.03267
121551A	0.32922	0.02850	-0.58007	0.07437
121570A	0.72479	0.06880	-1.61948	0.12354
121580A	0.50548	0.04459	0.49920	0.08516
121985A	0.21419	0.03398	1.17891	0.24735
121987A	0.46485	0.04324	0.59892	0.09581
122582A	0.24976	0.02679	-0.45171	0.09032
124194A	1.07211	0.04658	-0.78850	0.02968
124196A	0.39705	0.02974	-0.59079	0.06273
124199A	0.51933	0.03133	0.15932	0.04337
124205A	0.54993	0.03239	-0.51163	0.04418
512069	0.34704	0.03914	0.22727	0.11069

Table I-3. 2016-17 MSAA: IRT Parameters for ELA Grade 5

			Table l-3. 2016-17	
IREF	a	$S E(a)$	b	$S E(b)$
114072A	0.75004	0.06016	-0.78858	0.06962
114329A	0.64100	0.05178	-0.43550	0.06856
114331A	0.38959	0.04095	-0.20679	0.10177
114332A	0.79361	0.05630	-0.02022	0.05465
114338A	1.61709	0.12046	-0.84182	0.03807
114334A	1.09495	0.09300	-1.14338	0.06733
114341A	0.92488	0.08656	-1.37851	0.09450
115053A	1.19857	0.05036	-0.86357	0.10127
115054A	1.06562	0.05124	-1.44057	0.04384
115055A	0.77934	0.03930	-1.50664	0.05763
115056A	1.06076	0.04259	-0.89443	0.02879
117109A	0.43399	0.00000	-0.06065	0.04878
117110A	0.23102	0.02112	1.91235	0.19188
117111A	0.65975	0.02963	-0.75875	0.04016

$I R E F$	a	$S E(a)$	b	$S E(b)$
117112A	0.50215	0.02451	0.07844	0.04335
117523A	0.61833	0.05068	-0.21016	0.06608
117524A	0.56250	0.04762	0.08162	0.07143
117525A	0.63763	0.05028	0.10580	0.06449
119271A	0.66143	0.02910	-0.62412	0.03768
119970A	0.31901	0.02186	0.95275	0.09048
119971A	0.24902	0.02064	0.71570	0.10162
119973A	1.00831	0.03674	-0.37634	0.02469
120909A	0.71208	0.05633	-0.47385	0.06250
120910A	0.65760	0.05420	-0.51412	0.06816
121222A	1.09563	0.04701	-1.12588	0.03290
121457A	0.61793	0.04861	0.21590	0.06886
121458A	0.17129	0.03047	0.52413	0.23723
121459A	0.71376	0.05292	-0.02441	0.05942
				continued

IREF	a	SE (a)	b	SE (b)
121478A	0.58632	0.02651	-0.29161	0.03803
121479A	0.47630	0.02531	-0.74059	0.05347
121564A	0.39327	0.02362	-0.74287	0.06396
121568A	0.75868	0.02992	-0.19334	0.03032
121571A	0.18265	0.01954	1.07209	0.16027
121672A	0.97738	0.03953	-0.86712	0.03031
121733A	0.47857	0.04388	-0.02638	0.08334

IREF	a	SE (a)	b	$S E(b)$
122062A	0.34244	0.02198	0.08935	0.06127
124213A	0.56888	0.02563	0.28930	0.04081
124219A	1.27864	0.05765	-1.27162	0.03303
124228A	0.39590	0.00000	0.26553	0.05565
124234A	0.92625	0.03741	-0.81154	0.03075

Table I-4. 2016-17 MSAA: IRT Parameters for ELA Grade 6

IREF	a	SE (a)	b	SE (b)
113612A	0.56812	0.02629	-0.24396	0.03912
113614A	0.69028	0.02838	-0.09073	0.03256
114380A	1.30747	0.09294	-0.85881	0.04500
114382A	1.20020	0.08195	-0.71868	0.04459
115183A	0.78430	0.03137	-0.40386	0.03078
115502A	0.47059	0.04342	-0.08441	0.08016
115503A	0.76168	0.05429	-0.19611	0.05339
119997A	0.24003	0.03523	1.58384	0.26480
119998A	0.37075	0.03926	0.17795	0.10252
119999A	0.35912	0.03961	1.06995	0.14676
120000A	0.22051	0.03350	0.67262	0.19031
120011A	0.23330	0.03549	1.79864	0.29830
120012A	0.26145	0.03623	-0.18253	0.14119
120013A	0.20870	0.00000	2.13677	0.37364
120014A	0.30643	0.03798	-0.11625	0.11997
120042A	1.28383	0.06905	-1.54433	0.04735
120043A	1.13301	0.05326	-1.27894	0.03905
120044A	1.21574	0.04968	-0.92387	0.02740
120389A	1.43412	0.12686	-1.32580	0.05945
120390A	1.43842	0.11954	-1.20200	0.05206
120391A	1.50319	0.11304	-0.98378	0.04156
120392A	1.54497	0.12567	-1.14072	0.04645

IREF	a	$S E(a)$	b	$S E(b)$
121225A	0.63234	0.02800	-0.41762	0.03723
121226A	0.53972	0.02591	-0.32520	0.04171
121349A	0.24432	0.00000	1.88636	0.29882
121353A	0.88696	0.05928	-0.26315	0.04916
121358A	0.79118	0.05500	-0.11829	0.05140
121359A	0.66453	0.05075	-0.23445	0.06030
121373A	0.82949	0.03506	-0.81275	0.03515
121374A	1.37461	0.05364	-0.81011	0.02303
121375A	0.84869	0.03747	-1.00889	0.03918
121482A	1.28933	0.10703	-1.22625	0.05780
121483A	1.14536	0.08165	-0.84393	0.04757
121521A	0.45819	0.02438	-0.29297	0.04798
121522A	0.50480	0.02469	0.34265	0.04479
121529A	0.39043	0.02296	0.08717	0.05367
121802A	0.83887	0.05958	-0.55406	0.05574
121803A	0.89148	0.06822	-0.96794	0.06614
121804A	0.81098	0.05588	-0.24055	0.05260
122258A	0.41654	0.04147	0.87221	0.11601
122263A	0.48429	0.04349	0.77963	0.09717
124240A	0.56422	0.02828	-0.90649	0.05222
124242A	0.88718	0.03463	-0.53073	0.02892
124257A	0.39602	0.02313	-0.06775	0.05291
124263A	0.27952	0.02134	0.43057	0.07894

Table I-5. 2016-17 MSAA: IRT Parameters for ELA Grade 7

IREF	a	$S E(a)$	b	$S E(b)$
114482A	0.67909	0.05420	-0.68585	0.06846
114483A	0.80980	0.06294	-0.88292	0.06615
114484A	0.43389	0.04185	-0.03336	0.08554
114643A	1.47511	0.10306	-0.75542	0.03812
114644A	1.00875	0.06459	-0.04303	0.04397
114645A	1.07501	0.06907	-0.22799	0.04192
114646A	0.84294	0.06844	-1.03170	0.07275
115372A	0.29422	0.00000	-0.00222	0.06853
115373A	0.47889	0.02402	-0.19157	0.04392
115431A	1.34376	0.04739	-0.54276	0.01995
115432A	0.55938	0.02557	-0.24852	0.03850
115433A	0.84789	0.03287	-0.50550	0.02847
120060A	0.48151	0.04334	0.05028	0.07823
120061A	0.57137	0.04672	-0.08016	0.06697
120072A	0.36079	0.03965	-0.27797	0.10787
120073A	0.61232	0.04791	0.04003	0.06536
120098A	1.32751	0.06284	-1.34996	0.03498
120099A	1.19254	0.05962	-1.30593	0.03767
120465A	1.56441	0.13916	-1.22382	0.05556
120467A	0.43507	0.04313	-0.35979	0.09479
121313A	0.73277	0.02988	-0.46864	0.03189
121343A	0.28780	0.02085	0.13174	0.07100

IREF	a	$S E(a)$	b	$S E(b)$
121425A	0.97842	0.08265	-1.15631	0.07306
121490A	0.49165	0.04417	-0.20051	0.07726
121491A	0.36003	0.03904	0.35179	0.10989
121493A	1.80791	0.07800	-0.99356	0.01883
121494A	0.26470	0.03586	0.98436	0.18661
121495A	0.53220	0.04474	0.53528	0.08277
121497A	0.76094	0.03571	-1.22189	0.04703
121505A	1.37475	0.06340	-1.28824	0.03203
121507A	0.45697	0.04255	-0.00402	0.08409
121509A	1.29448	0.05267	-0.99648	0.02577
121513A	0.36114	0.03941	-0.07102	0.10137
121871A	0.74693	0.05723	-0.61377	0.06265
121874A	0.53029	0.04726	-0.59621	0.08441
122235A	0.41185	0.00000	0.35694	0.05407
122380A	0.29086	0.03731	-0.54869	0.13930
123641A	0.31321	0.03754	0.17301	0.11781
123649A	0.28294	0.03633	0.17531	0.13253
124269A	1.17183	0.05324	-1.27016	0.03527
124271A	0.44921	0.00000	0.97815	0.06577
124284A	0.44629	0.02396	-0.51939	0.05067
124286A	0.27556	0.02074	-0.11454	0.07296

Table I-6. 2016-17 MSAA: IRT Parameters for ELA Grade 8

IREF	a	SE (a)	b	SE (b)
111247A	0.96014	0.04007	-0.80398	0.03166
111281A	0.30469	0.03722	-0.24176	0.11863
111283A	0.27449	0.03872	2.13293	0.31756
111286A	0.73861	0.03175	0.18573	0.03123

IREF	a	SE (a)	b	$S E(b)$
111335 A	0.70729	0.05531	-0.08266	0.05637
111339 A	0.48178	0.02654	0.45073	0.04997
111352 A	0.88763	0.07239	-1.05944	0.07311

IREF	a	$S E(a)$	b	$S E(b)$
111560A	0.81213	0.05690	0.17675	0.04992
111562A	0.48603	0.05124	-1.89518	0.18484
111581A	0.42529	0.02609	-0.66405	0.05883
111583A	0.33745	0.02430	0.93847	0.08947
111593A	0.39367	0.04070	1.17126	0.13934
111594A	0.67978	0.03045	0.07574	0.03261
111597A	0.52736	0.04702	0.33856	0.07900
111615A	0.62115	0.05146	-0.54555	0.07102
111622A	0.74437	0.03187	0.14672	0.03070
112452A	0.53312	0.04788	-0.14422	0.07230
112460A	0.52310	0.04742	0.21294	0.07770
112466A	0.62836	0.02947	-0.10815	0.03444
112470A	0.38514	0.02545	-0.77479	0.06852
112475A	0.64937	0.05702	-0.93080	0.08501
112476A	0.15103	0.02000	0.43848	0.14662
112477A	0.25322	0.03675	1.71659	0.28133
112480A	0.46622	0.02620	0.37259	0.04969
112486A	0.58683	0.04951	0.62448	0.08192
112490A	0.71232	0.05581	-0.11277	0.05695
112491A	0.55744	0.04615	0.48606	0.07470
112494A	0.58434	0.05631	-1.32651	0.11991
112499A	1.25303	0.09295	-0.90234	0.04972
112500A	0.44563	0.04204	0.57650	0.09380
112506A	0.71589	0.03141	-0.13301	0.03083
112509A	0.64888	0.05107	-0.20273	0.06014

IREF	a	SE (a)	b	SE (b)
112516A	0.80173	0.05918	0.12500	0.05323
113909A	1.14562	0.08587	-0.89390	0.05287
113917A	0.90027	0.06705	-0.52709	0.05148
113918A	0.68441	0.03237	-0.79098	0.04151
113932A	0.60512	0.04806	0.34152	0.06627
113933A	0.56906	0.04915	0.40791	0.07739
113937A	0.54033	0.04753	0.48555	0.08215
113943A	0.79149	0.05945	-0.15808	0.05137
113952A	0.61486	0.02914	0.37551	0.03905
113957A	0.43988	0.04192	0.76092	0.10310
113959A	0.38684	0.04270	1.02100	0.14477
113963A	0.70358	0.05465	0.11762	0.05806
113968A	1.01758	0.03871	-0.11012	0.02311
113973A	0.82140	0.06132	-0.25193	0.05111
113978A	0.62064	0.02933	-0.12894	0.03486
117071A	0.31538	0.03858	-1.01142	0.15843
117072A	0.90607	0.03572	0.08414	0.02580
120560A	1.02251	0.07071	-0.17977	0.04251
120568A	0.61557	0.04870	0.11270	0.06185
120571A	0.44761	0.04386	0.36188	0.09180
122051A	0.71012	0.03112	0.08278	0.03148
122099A	0.61447	0.02906	0.09762	0.03570
519587	0.73966	0.05453	-0.08432	0.05284

Table I-7. 2016-17 MSAA: IRT Parameters for ELA Grade 11

IREF	a	SE (a)	b	SE (b)
110843 A	0.57072	0.05473	0.43057	0.08605
110858 A	0.65393	0.05540	0.10577	0.06193
110867 A	0.69739	0.07320	-1.19768	0.11344
110881 A	0.56649	0.05586	-0.07456	0.07686
110882 A	0.60187	0.05455	0.27821	0.07361

IREF	a	SE (a)	b	SE (b)
110913 A	0.66613	0.05550	0.46347	0.06932
110914 A	0.81264	0.04557	0.23591	0.03991
110915 A	0.96756	0.08904	-0.93577	0.07252
110921 A	0.67563	0.04135	0.13590	0.04488
				continued

IREF	a	$S E(a)$	b	$S E(b)$
110936A	0.69434	0.04380	-0.39045	0.04521
110968A	0.44155	0.04883	0.65669	0.11771
111000A	0.64190	0.05696	0.13335	0.06725
111002A	0.90917	0.07043	-0.17013	0.04830
111016A	0.68055	0.04122	0.30327	0.04715
111024A	0.78688	0.07059	-0.64556	0.06894
111042A	0.79504	0.06424	0.24562	0.05826
111109A	0.28562	0.03031	0.57070	0.11291
111533A	0.82602	0.05406	-1.02656	0.05919
111537A	0.54175	0.03705	0.67040	0.06760
111538A	0.82915	0.04593	0.35841	0.04132
111544A	0.44758	0.03458	0.77774	0.08413
111545A	0.25423	0.03880	1.64424	0.28154
111546A	0.48183	0.05023	-0.21135	0.08734
111548A	0.51731	0.05005	0.74512	0.10114
111553A	0.82269	0.06565	0.25106	0.05685
111557A	0.68536	0.04134	0.32596	0.04730
111809A	0.83677	0.06574	0.42677	0.06023
111810A	1.18704	0.05940	0.19022	0.02955
111813A	0.84293	0.07613	-0.79530	0.07267
111815A	0.69967	0.06250	-0.05578	0.06400
111818A	0.98430	0.07389	-0.07007	0.04560
111824A	0.72603	0.04318	0.04547	0.04145
111828A	0.50921	0.05181	0.75305	0.10960

IREF	a	$S E(a)$	b	$S E(b)$
111829A	0.67671	0.05596	0.42779	0.06730
111830A	0.46005	0.03827	-1.02292	0.09428
111833A	0.64633	0.05619	0.47888	0.07495
111840A	0.54485	0.05081	0.08117	0.07226
112701A	1.16311	0.08999	-0.76392	0.05088
112702A	0.56797	0.05462	0.41465	0.08582
112708A	0.80594	0.04571	0.08430	0.03834
112709A	0.31844	0.04114	1.37683	0.21111
112717A	0.87314	0.04798	0.09496	0.03607
112722A	1.09749	0.05848	-0.31854	0.02987
112727A	1.01744	0.07492	-0.31242	0.04347
112732A	0.66124	0.05747	0.25741	0.06771
112733A	0.46650	0.05004	0.43199	0.10187
112743A	0.62758	0.05416	0.15787	0.06489
112744A	0.64045	0.05517	-0.02615	0.06207
112924A	0.87327	0.07216	-0.75703	0.06342
112940A	0.53390	0.05001	0.41112	0.08132
112945A	0.41784	0.03442	-0.21528	0.06827
112946A	0.52323	0.03706	-0.00646	0.05471
122021A	0.36100	0.04331	0.96869	0.15186
122055A	0.23836	0.02890	0.60320	0.13520

Table I-8. 2016-17 MSAA: IRT Parameters for Mathematics Grade 3

IREF	a	SE (a)	b	SE (b)
110842 A	0.87581	0.06541	-0.43642	0.05127
110855A	0.72744	0.03108	0.12789	0.03304
110864A	0.29240	0.03855	-0.22640	0.12998
110865 A	0.21729	0.00000	2.12273	0.23075
110866 A	0.33776	0.03964	1.00564	0.15901
110873 A	0.55736	0.04780	0.72386	0.09086

IREF	a	SE (a)	b	$S E(b)$
110876 A	0.57114	0.02768	0.62894	0.04792
110920 A	0.45106	0.04746	1.36847	0.15419
110923 A	1.11897	0.04675	-0.75661	0.02753
110928A	0.51293	0.04850	0.83411	0.10457
110959 A	0.40919	0.02692	-1.15761	0.08372
				continued

IREF	a	SE (a)	b	SE (b)
110964A	0.76094	0.03624	-0.91234	0.04200
110966A	0.32831	0.04236	-0.71790	0.14561
110974A	0.81549	0.03316	0.10823	0.03007
110975A	0.45308	0.02562	-0.07540	0.04859
111376A	0.79401	0.06927	-1.03964	0.08320
111377A	0.59110	0.02937	-0.48379	0.04163
111382A	0.63837	0.03039	-0.44615	0.03833
111386A	0.84752	0.03441	-0.10369	0.02848
111390A	0.45096	0.04428	-0.13215	0.08661
111397A	0.45060	0.02575	-0.20706	0.04939
111399A	0.34221	0.04320	-1.47324	0.19872
111400A	0.45132	0.04423	0.08271	0.08600
111411A	0.28889	0.02260	0.38485	0.07970
111420A	0.58810	0.02793	0.43433	0.04307
111425A	2.10200	0.14579	-0.65681	0.02800
111426A	0.77747	0.05700	0.29130	0.05839
111432A	0.62906	0.05189	0.41260	0.07204
111434A	0.72729	0.03707	-1.16261	0.05208
111435A	0.47533	0.04616	0.67433	0.10127
111883A	0.38984	0.02455	0.98695	0.07981
112544A	0.60070	0.05663	-1.12890	0.10379
112551A	0.56140	0.05257	-0.57955	0.08365

IREF	a	$S E(a)$	b	$S E(b)$
112552A	0.67892	0.03106	-0.35321	0.03529
112553A	0.65746	0.05303	0.39958	0.06918
112555A	0.85940	0.03956	-0.92080	0.03817
112560A	0.34916	0.04148	0.21318	0.11455
112564A	0.62087	0.03131	-0.78390	0.04620
112565A	0.57765	0.02778	0.58754	0.04658
112566A	0.63440	0.05296	0.59002	0.07788
112569A	0.60126	0.05276	-0.60535	0.07605
112570A	0.21046	0.01941	1.24139	0.14208
112571A	0.91753	0.03579	0.06030	0.02724
112575A	0.64634	0.03067	-0.47003	0.03824
112576A	0.49805	0.04868	1.32482	0.13492
112585A	0.78172	0.05903	0.31321	0.05909
112586A	0.54118	0.04922	0.95010	0.10352
112595A	1.04177	0.04019	-0.25315	0.02436
112615A	0.34724	0.02356	0.34979	0.06641
112616A	0.32652	0.02399	1.51817	0.12290
112622A	0.27825	0.03865	0.93084	0.18235
120682A	0.71751	0.03223	-0.41473	0.03423
122087A	1.62515	0.10425	-0.01691	0.03269
122090A	1.88090	0.11671	-0.01670	0.02865
122104A	1.66013	0.10773	-0.16810	0.03157

Table I-9. 2016-17 MSAA: IRT Parameters for Mathematics Grade 4

			c	IREF
$111123 A$	0.56644	0.04939	-0.24500	0.07056
111124 A	0.61788	0.05240	0.11906	0.06649
111135 A	0.27523	0.02168	-0.84482	0.09810
111136 A	0.90348	0.03488	-0.26531	0.02752
111139 A	0.57491	0.05220	-0.87884	0.09294

$I R E F$	a	$S E(a)$	b	$S E(b)$
111148 A	0.65022	0.05386	0.65408	0.07711
111161 A	0.33553	0.04134	1.53329	0.20570
111162 A	0.32547	0.04122	1.13727	0.17718
111166 A	0.80828	0.03224	0.01454	0.02915

IREF	a	SE (a)	b	SE (b)
111179A	0.26518	0.03781	1.54848	0.25029
111185A	0.51254	0.04691	0.58198	0.08957
111663A	0.66840	0.03201	-1.26330	0.05663
111667A	0.41701	0.02763	-2.02329	0.12749
111676A	0.81529	0.03248	0.19156	0.02944
111677A	1.02791	0.03806	0.03797	0.02422
111678A	0.59689	0.04995	0.24768	0.06912
111682A	0.91856	0.03511	0.11767	0.02653
111685A	0.25335	0.03882	-1.31842	0.24453
111686A	0.62336	0.02800	0.29791	0.03753
111688A	0.56768	0.02670	-0.00034	0.03909
111695A	0.31509	0.02438	-2.02817	0.15865
111696A	0.29797	0.03876	0.79266	0.15937
111698A	0.37021	0.04510	1.84687	0.22824
111705A	0.24787	0.02086	0.08258	0.08396
111711A	0.28134	0.03895	0.92457	0.18039
111712A	0.42562	0.02408	0.50272	0.05604
111715A	0.73516	0.06394	-1.21470	0.09394
111716A	0.70052	0.02964	0.04548	0.03277
111717A	0.66323	0.02903	-0.35102	0.03613
111721A	0.50401	0.02564	0.51956	0.04851
111727A	0.47773	0.02502	0.40385	0.04878
111728A	0.58567	0.05537	-0.90452	0.09669
111731A	0.61928	0.02783	0.15237	0.03668

IREF	a	$S E(a)$	b	$S E(b)$
112783A	0.57724	0.04892	-0.01935	0.06783
112788A	0.35543	0.04086	0.37669	0.11388
112794A	0.30741	0.02179	0.88369	0.08865
112797A	0.14808	0.01883	1.29825	0.21196
112803A	0.72425	0.03033	-0.23747	0.03264
112812A	0.33983	0.04204	1.61829	0.21630
112817A	0.35117	0.04444	1.95252	0.25009
112818A	0.27521	0.04096	2.61099	0.39117
112824A	0.88935	0.06155	0.32320	0.05057
112828A	0.37318	0.04343	-0.44097	0.11322
112833A	0.53924	0.04744	0.54579	0.08291
112839A	0.33074	0.02234	0.92216	0.08472
120551A	0.32889	0.04332	2.27761	0.29814
121661A	0.34355	0.04073	1.01618	0.15588
121663A	0.24209	0.03691	0.94636	0.20733
121665A	0.44157	0.02476	0.83601	0.06304
121691A	0.49594	0.02560	0.61944	0.05132
121737A	1.28267	0.08571	-0.18771	0.03678
122265A	0.33351	0.02580	2.47940	0.18487
122267A	0.72533	0.03023	-0.01800	0.03182
122368A	1.49222	0.09787	0.71486	0.04116
122432A	1.01577	0.07406	0.98485	0.06545

Table I-10. 2016-17 MSAA: IRT Parameters for Mathematics Grade 5

IREF	a	$S E(a)$	b	$S E(b)$
111234 A	0.22375	0.02331	-0.62610	0.10971
111242A	0.89434	0.06923	-0.97589	0.06909
111243A	1.12295	0.07490	0.02916	0.04114
111244A	0.77509	0.03336	0.26898	0.03055
111258A	0.50391	0.05036	1.44851	0.14702
111259A	0.35557	0.04182	0.98568	0.14996

IREF	a	SE (a)	b	SE (b)
111262 A	0.35639	0.04312	-1.09229	0.15922
111275 A	0.34350	0.04247	-0.82514	0.14458
111276 A	0.63654	0.03050	0.10823	0.03447
111277A	0.45201	0.04500	0.19356	0.08914
111294A	0.76431	0.05762	0.28658	0.05838
				continued

IREF	a	$S E(a)$	b	$S E(b)$
111295A	0.51195	0.04654	0.60637	0.08716
11298A	0.42037	0.04565	1.28262	0.15568
111299A	0.31973	0.02566	1.41212	0.12454
111303A	0.49971	0.00000	-0.18552	0.04287
111308A	0.78779	0.05660	0.17939	0.05254
112335A	0.85400	0.06574	-0.69445	0.06072
112342A	0.50555	0.02798	0.14210	0.04253
112346A	0.89281	0.03869	-0.63396	0.03126
112348A	0.51887	0.04763	0.39711	0.08376
112352A	0.30654	0.03959	-0.01111	0.12283
112354A	0.35853	0.04317	1.72393	0.21339
112358A	0.47369	0.02789	0.88475	0.06443
112359A	0.39339	0.04473	1.55420	0.18528
112363A	0.45619	0.02758	0.90291	0.06735
112364A	0.42435	0.04555	1.50052	0.16587
112365A	0.14565	0.02943	2.29157	0.51897
112368A	1.12337	0.07410	0.12471	0.04093
112369A	0.90019	0.06374	0.16927	0.04976
112372A	1.21842	0.04965	-0.75829	0.02647
112373A	0.47293	0.00000	-0.11449	0.04459
112377A	0.79581	0.06579	-0.89233	0.07311
112384A	0.86851	0.06042	0.13748	0.04778

IREF	a	SE (a)	b	SE (b)
112385A	0.48478	0.02759	0.31537	0.04656
112386A	0.43375	0.04502	0.85563	0.12075
112392A	0.24409	0.04058	3.11506	0.52123
112408A	0.70517	0.05484	0.50459	0.06629
112410A	0.47016	0.04472	0.23658	0.08201
112416A	0.22409	0.02315	-0.24717	0.09335
113856A	0.28723	0.02536	1.70375	0.15976
113862A	0.33158	0.02591	1.41010	0.12052
113863A	0.43230	0.04356	-0.11845	0.08686
113867A	0.31933	0.02562	1.38593	0.12285
113872A	0.44056	0.04649	1.26086	0.14798
113877A	0.22622	0.02481	2.54526	0.28471
113878A	0.21960	0.03525	0.78915	0.20753
113883A	0.31225	0.00000	0.20950	0.06754
113889A	0.48917	0.02876	-0.62711	0.05287
113892A	0.65180	0.03077	0.17865	0.03432
113899A	0.55497	0.05157	-1.00140	0.10339
113902A	0.29488	0.04000	1.53172	0.23146
120724A	1.05046	0.07171	0.77014	0.05312
120737A	0.98714	0.04052	0.91058	0.03573
120739A	1.00009	0.06928	0.68807	0.05522
121514A	1.06758	0.04239	0.82469	0.03189

Table I-11. 2016-17 MSAA: IRT Parameters for Mathematics Grade 6

IREF	a	SE (a)	b	$S E(b)$
110891A	0.65048	0.03484	-1.22571	0.06038
110903A	0.83755	0.07176	-1.08911	0.07806
110909A	0.63149	0.03397	-1.19770	0.06048
110910A	0.50771	0.00000	0.09811	0.04233
110938A	0.56919	0.02744	-0.00525	0.03794
110939A	0.35134	0.03985	0.33893	0.11066
110944A	0.88657	0.06932	-0.81363	0.06124
110977A	0.74254	0.05687	-0.12549	0.05547
110980A	0.69180	0.05638	-0.46673	0.06287
110981A	0.71461	0.05414	-0.09885	0.05510
110984A	0.42093	0.04150	1.21511	0.13778
110986A	0.75830	0.03270	-0.32631	0.03066
110990A	1.22814	0.08371	-0.54037	0.03860
110991A	0.52409	0.04537	0.06054	0.07394
110993A	0.50503	0.04583	-0.03811	0.07455
110996A	0.80887	0.03265	0.06229	0.02850
111022A	0.70633	0.05185	0.59344	0.06762
111025A	0.97228	0.06920	-0.31838	0.04521
111038A	0.62138	0.05155	-0.44420	0.06830
111441A	0.42037	0.04226	0.92376	0.12236
111445A	0.65866	0.05222	0.33501	0.06717
111450A	1.00460	0.04567	-1.00271	0.03627
111452A	0.57738	0.04671	0.54999	0.07787
111455A	0.78472	0.05587	0.15911	0.05382
111456A	0.58487	0.04928	0.32126	0.07368
111465A	0.46592	0.04284	0.23922	0.08431
111479A	1.19367	0.07944	-0.17636	0.03812
111482A	1.15362	0.04528	-0.52798	0.02324

$I R E F$	a	$S E(a)$	b	$S E(b)$
111487 A	0.36189	0.02426	-0.61555	0.06804
111496A	0.52992	0.03011	-1.10956	0.06532
111507A	0.69066	0.03007	-0.00829	0.03216
111508A	0.58023	0.05089	-0.65517	0.07993
111514A	0.80214	0.03351	-0.25471	0.02873
111517A	1.20629	0.04527	-0.34347	0.02099
111518A	0.57392	0.00000	-0.14040	0.03780
111630A	0.81388	0.06968	-1.13180	0.08290
112645A	0.74409	0.03108	0.08544	0.03060
112655A	0.34459	0.03838	0.94178	0.14336
112656A	0.73902	0.06408	-1.04465	0.08288
112658A	0.42458	0.02488	-0.20939	0.05027
112663A	0.48099	0.00000	0.38296	0.04774
112667A	0.25876	0.02226	1.83846	0.16793
112671A	0.42354	0.04301	-0.53423	0.10029
112672A	0.57732	0.04784	0.21455	0.06902
112676A	0.44636	0.02700	-0.92360	0.06696
112679A	1.37120	0.08955	-0.20825	0.03442
112692A	0.85740	0.06546	-0.65304	0.05694
112699A	0.33587	0.02285	0.54886	0.07025
112956A	0.70979	0.05466	-0.12542	0.05658
120494A	0.78024	0.05996	-0.36307	0.05484
120854A	0.63767	0.05084	-0.04338	0.06078
120855A	0.70457	0.00000	-0.23223	0.03198
121487A	0.89926	0.03508	-0.01542	0.02595
121520A	0.17223	0.02063	2.68991	0.33271
514235	0.59215	0.02762	0.19698	0.03780

Table I-12. 2016-17 MSAA: IRT Parameters for Mathematics Grade 7

IREF	a	SE (a)	b	SE (b)
111048A	0.72887	0.05724	-0.07583	0.05667
111055A	0.73301	0.03233	-0.03240	0.02966
111066A	0.34610	0.04092	0.99496	0.15400
111067A	0.29932	0.03747	1.14362	0.18230
111069A	0.96622	0.08344	-1.21071	0.07896
111070A	1.12712	0.08169	-0.55051	0.04262
111071A	0.88207	0.06100	0.09292	0.04760
111075A	0.99419	0.07395	-0.50001	0.04817
111076A	0.54269	0.00000	0.42326	0.04454
111080A	0.67743	0.03065	0.25309	0.03428
111085A	0.32388	0.03943	0.76104	0.14481
111093A	0.65642	0.03065	-0.01596	0.03266
111094A	0.59989	0.04845	0.37497	0.07080
111098A	0.75597	0.03734	-0.89387	0.04155
111100A	0.73178	0.05587	-0.17461	0.05361
111104A	1.02496	0.07173	-0.38754	0.04174
111105A	0.66182	0.05247	0.05497	0.06135
111106A	0.26691	0.03974	2.61591	0.39570
11119A	0.81598	0.05896	0.12629	0.05270
111127A	0.60111	0.00000	0.27709	0.03823
111130A	0.57174	0.05395	-0.88372	0.09283
11131A	0.47055	0.02670	0.63864	0.05647
111641A	0.91595	0.07383	-0.82153	0.06010
111134A	1.00480	0.03999	-0.28614	0.02291
111138A	0.86390	0.07540	-1.14302	0.07997
111144A	0.86501	0.03828	-0.59561	0.02971
111748A	0.40252	0.03011	-1.68534	0.12132
111749A	1.06852	0.04579	-0.73965	0.02753

IREF	a	SE (a)	b	SE (b)
111758A	0.56278	0.03223	-1.02302	0.05870
111761A	0.33415	0.02072	1.04541	0.08230
111766A	0.64673	0.00000	0.22916	0.03528
111769A	0.88653	0.03801	-0.47003	0.02712
111775A	0.21976	0.03547	2.03402	0.35916
111778A	0.85753	0.04600	-1.35886	0.05685
111779A	0.74600	0.03317	-0.21015	0.02918
111780A	0.30779	0.03971	2.14511	0.28495
111795A	0.59934	0.04941	0.51266	0.07608
111796A	0.58610	0.04877	0.24642	0.07092
111799A	0.37558	0.04031	0.33879	0.10416
111804A	0.57246	0.02894	-0.02069	0.03677
111841A	0.36870	0.03990	0.63364	0.11916
112852A	0.61564	0.05556	-0.68832	0.08028
112870A	0.48684	0.02704	0.23292	0.04509
112871A	0.26767	0.02340	0.16445	0.07673
112880A	0.36009	0.04298	-1.04128	0.14827
112882A	0.47533	0.02688	0.17781	0.04521
112886A	0.61484	0.02932	0.37621	0.03919
112887A	0.59096	0.04899	0.23527	0.07021
112890A	0.59709	0.02895	0.48022	0.04228
112899A	0.37329	0.02686	-0.97940	0.08111
112901A	0.32370	0.00000	0.98979	0.09647
112910A	0.89818	0.06421	0.12302	0.04904
112911A	0.65813	0.03021	0.30216	0.03582
113101A	0.55796	0.04916	0.18577	0.07323

Table I-13. 2016-17 MSAA: IRT Parameters for Mathematics Grade 8

IREF	a	$S E(a)$	b	$S E(b)$
111247A	0.96014	0.04007	-0.80398	0.03166
111281A	0.30469	0.03722	-0.24176	0.11863
111283A	0.27449	0.03872	2.13293	0.31756
111286A	0.73861	0.03175	0.18573	0.03123
111335A	0.70729	0.05531	-0.08266	0.05637
111339A	0.48178	0.02654	0.45073	0.04997
111352A	0.88763	0.07239	-1.05944	0.07311
111560A	0.81213	0.05690	0.17675	0.04992
111562A	0.48603	0.05124	-1.89518	0.18484
111581A	0.42529	0.02609	-0.66405	0.05883
111583A	0.33745	0.02430	0.93847	0.08947
111593A	0.39367	0.04070	1.17126	0.13934
111594A	0.67978	0.03045	0.07574	0.03261
111597A	0.52736	0.04702	0.33856	0.07900
111615A	0.62115	0.05146	-0.54555	0.07102
111622A	0.74437	0.03187	0.14672	0.03070
112452A	0.53312	0.04788	-0.14422	0.07230
112460A	0.52310	0.04742	0.21294	0.07770
112466A	0.62836	0.02947	-0.10815	0.03444
112470A	0.38514	0.02545	-0.77479	0.06852
112475A	0.64937	0.05702	-0.93080	0.08501
112476A	0.15103	0.02000	0.43848	0.14662
1124777A	0.25322	0.03675	1.71659	0.28133
112480A	0.46662	0.02620	0.37259	0.04969
112486A	0.58883	0.04951	0.62448	0.08192
112490A	0.71232	0.05581	-0.11277	0.05695
112491A	0.55744	0.04615	0.48606	0.07470
112494A	0.58434	0.05631	-1.32651	0.11991

IREF	a	SE (a)	b	SE (b)
112499A	1.25303	0.09295	-0.90234	0.04972
112500A	0.44563	0.04204	0.57650	0.09380
112506A	0.71589	0.03141	-0.13301	0.03083
112509A	0.64888	0.05107	-0.20273	0.06014
112516A	0.80173	0.05918	0.12500	0.05323
113909A	1.14562	0.08587	-0.89390	0.05287
113917A	0.90027	0.06705	-0.52709	0.05148
113918A	0.68441	0.03237	-0.79098	0.04151
113932A	0.60512	0.04806	0.34152	0.06627
113933A	0.56906	0.04915	0.40791	0.07739
113937A	0.54033	0.04753	0.48555	0.08215
113943A	0.79149	0.05945	-0.15808	0.05137
113952A	0.61486	0.02914	0.37551	0.03905
113957A	0.43988	0.04192	0.76092	0.10310
113959A	0.38684	0.04270	1.02100	0.14477
113963A	0.70358	0.05465	0.11762	0.05806
113968A	1.01758	0.03871	-0.11012	0.02311
113973A	0.82140	0.06132	-0.25193	0.05111
113978A	0.62064	0.02933	-0.12894	0.03486
117071A	0.31538	0.03858	-1.01142	0.15843
117072A	0.90607	0.03572	0.08414	0.02580
120560A	1.02251	0.07071	-0.17977	0.04251
120568A	0.61557	0.04870	0.11270	0.06185
120571A	0.44761	0.04386	0.36188	0.09180
122051A	0.71012	0.03112	0.08278	0.03148
122099A	0.61447	0.02906	0.09762	0.03570
519587	0.73966	0.05453	-0.08432	0.05284

Table I-14. 2016-17 MSAA: IRT Parameters for Mathematics Grade 11

IREF	a	SE (a)	b	SE (b)	IREF	a	SE (a)	b	SE (b)
110843A	0.57072	0.05473	0.43057	0.08605	111815A	0.69967	0.06250	-0.05578	0.06400
110858A	0.65393	0.05540	0.10577	0.06193	111818A	0.98430	0.07389	-0.07007	0.04560
110867A	0.69739	0.07320	-1.19768	0.11344	111819A	0.58658	0.05317	0.68079	0.08872
110881A	0.56649	0.05586	-0.07456	0.07686	111824A	0.72603	0.04318	0.04547	0.04145
110882A	0.60187	0.05455	0.27821	0.07361	111828A	0.50921	0.05181	0.75305	0.10960
110913A	0.66613	0.05550	0.46347	0.06932	111829A	0.67671	0.05596	0.42779	0.06730
110914A	0.81264	0.04557	0.23591	0.03991	111830A	0.46005	0.03827	-1.02292	0.09428
110915A	0.96756	0.08904	-0.93577	0.07252	111833A	0.64633	0.05619	0.47888	0.07495
110921A	0.67563	0.04135	0.13590	0.04488	111840A	0.54485	0.05081	0.08117	0.07226
110936A	0.69434	0.04380	-0.39045	0.04521	112701A	1.16311	0.08999	-0.76392	0.05088
110968A	0.44155	0.04883	0.65669	0.11771	112702A	0.56797	0.05462	0.41465	0.08582
111000A	0.64190	0.05696	0.13335	0.06725	112708A	0.80594	0.04571	0.08430	0.03834
111002A	0.90917	0.07043	-0.17013	0.04830	112709A	0.31844	0.04114	1.37683	0.21111
111016A	0.68055	0.04122	0.30327	0.04715	112717A	0.87314	0.04798	0.09496	0.03607
111024A	0.78688	0.07059	-0.64556	0.06894	112722A	1.09749	0.05848	-0.31854	0.02987
111042A	0.79504	0.06424	0.24562	0.05826	112727A	1.01744	0.07492	-0.31242	0.04347
111109A	0.28562	0.03031	0.57070	0.11291	112732A	0.66124	0.05747	0.25741	0.06771
111533A	0.82602	0.05406	-1.02656	0.05919	112733A	0.46650	0.05004	0.43199	0.10187
111537A	0.54175	0.03705	0.67040	0.06760	112743A	0.62758	0.05416	0.15787	0.06489
111538A	0.82915	0.04593	0.35841	0.04132	112744A	0.64045	0.05517	-0.02615	0.06207
111544A	0.44758	0.03458	0.77774	0.08413	112924A	0.87327	0.07216	-0.75703	0.06342
111545A	0.25423	0.03880	1.64424	0.28154	112940A	0.53390	0.05001	0.41112	0.08132
111546A	0.48183	0.05023	-0.21135	0.08734	112945A	0.41784	0.03442	-0.21528	0.06827
111548A	0.51731	0.05005	0.74512	0.10114	112946A	0.52323	0.03706	-0.00646	0.05471
111553A	0.82269	0.06565	0.25106	0.05685	122021A	0.36100	0.04331	0.96869	0.15186
111557A	0.68536	0.04134	0.32596	0.04730	122055A	0.23836	0.02890	0.60320	0.13520

APPENDIX J-16-17 MSAA TECHNICAL BRIEF: RELATIONSHIP OF IRT DIFFICULTY WITH GRADE AND TIER LEVEL

MSAA 16-17 Technical Brief: Relationship of IRT Difficulty (b) with Grade and Tier Level

Prepared by Measured Progress June 21, 2018

Table of Contents

A ppendix J- 16-17 M SA A Technical Brief: relationship of irt difficulty with grade and tier level 1

1. Overview 6
2. Descriptive Statistics on IRT Difficulty 6
3. M odeling the Relationship of IRT Difficulty to Grade and Tier 11
3.1. ELA 11
3.2. M athematics 19
4. Conclusions 27
List of TablesTable 1. Summary Statistics on ELA IRT Difficulty (b) Estimates, as a Function of Grade and Tier . 7Table 2. Summary Statistics on Mathematics IRT Difficulty (b) Estimates, as a Function of Gradeand Tier8
Table 3. ANOVA Summary Table for ELA IRT Difficulties 11
Table 4. Multiple Linear Regression Coefficients and Their Standard Errors (SEs) for ELA Item Difficulties 12
Table 5. Multiple Comparison Analysis for the Tier Main Effect on Mean ELA IRT Difficulty 13
Table 6. Multiple Comparison Analysis for the Grade Main Effect on Mean ELA IRT Difficulty 13
Table 7. ANOVA Summary Table for Mathematics Item Difficulties 19
Table 8. Multiple Linear Regression Coefficients and Their Standard Errors (SEs) for Mathematics Item Difficulties 20
Table 9. Multiple Comparison Analysis for the Tier Main Effect on Mean Mathematics IRT Difficulty 21
Table 10. Multiple Comparison Analysis for the Tier Main Effect on Mean Mathematics IRT Difficulty 21
List of Figures
Figure 1. Histogram of ELA IRT Difficulties 9
Figure 2. Histogram of M athematics IRT Difficulties 10
Figure 3. M ean Differences and Confidence Interval B ands for ELA IRT Difficulty, as a Function of Pairs of Tiers 15
Figure 4. M ean Differences and Confidence Interval B ands for ELA IRT Difficulty, as a Function of Pairs of Grades 16
Figure 5. B ox Plot of ELA IRT Difficulty, as a Function of Tier 17
Figure 6. B ox Plot of ELA IRT Difficulty, as a Function of Grade 18
Figure 7. M ean Differences and Confidence Interval B ands for M athematics IRT Difficulty, as a Function of Pairs of Tiers 23
Figure 8. M ean Differences and Confidence Interval B ands for M athematics IRT Difficulty, as a Function of Pairs of Grades 24
Figure 9. B ox Plot of M athematics IRT Difficulty, as a Function of Tier 25
Figure 10. B ox Plot of M athematics IRT Difficulty, as a Function of Grade 26

1. Overview

This technical brief presents the results of an analysis on the relationship of item response theory (IRT) difficulty (b-parameters) to grade level and tier level for the English language arts (ELA) and mathematics Multi-State Alternate Assessments (MSAA) administered in school year 16-17. Descriptive statistics on IRT difficulty, as a function of grade (3 through 8 and 11), tier (1 through 4), and content area (ELA and mathematics) are presented, followed by the results of a two-way analysis of variance (and the equivalent multiple linear regression formulation).
Generally speaking, the findings shown below indicate that between the two predictors of grade and tier, tier alone can account for a sizeable portion of the total variation in IRT difficulties across both grade and tier.

2. Descriptive Statistics on IRT Difficulty

Table 1 contains the number of items and the mean, median, minimum (min), maximum (max), standard deviation (SD), skewness (skew), and kurtosis of ELA IRT difficulties, as a function of grade and tier. These statistics are based on the items administered on the MSAA ELA assessment for school year (SY) 16-17. Table 2 contains the same statistics, but for the MSAA mathematics assessment for SY 16-17. Note that there were no operational Tier 4 items in mathematics for grades 5 or 6 in SY 16-17. Figure 1 and Figure 2 contain the histogram of IRT difficulties (across all grades and tiers) for ELA and mathematics, respectively.

Table 1. Summary Statistics on ELA IRT Difficulty (b) Estimates, as a Function of Grade and Tier

Grade	Tier	n Items	Mean	Median	Min	Max	SD	Skew	Kurtosis
3	1	9	-1.293	-1.471	-1.595	-0.703	0.357	0.731	-1.321
	2	12	-0.579	-0.609	-1.240	0.800	0.584	0.875	-0.024
	3	10	-0.401	-0.333	-1.209	0.489	0.476	0.005	-0.669
	4	4	-0.593	-0.648	-0.826	-0.248	0.265	0.305	-2.080
4	1	11	-1.259	-1.276	-1.937	-0.789	0.401	-0.244	-1.630
	2	8	-0.515	-0.568	-0.801	0.123	0.294	1.067	-0.056
	3	15	-0.273	-0.412	-0.733	0.910	0.487	1.226	0.215
	4	5	-0.092	-0.170	-0.398	0.159	0.241	-0.008	-2.036
5	1	9	-1.130	-1.126	-1.507	-0.842	0.276	-0.120	-1.947
	2	8	-0.238	-0.292	-0.812	0.716	0.484	0.616	-0.719
	3	14	-0.271	-0.202	-0.867	0.289	0.385	-0.156	-1.632
	4	5	0.039	0.216	-0.789	0.524	0.502	-0.688	-1.336
6	1	12	-1.067	-0.996	-1.544	-0.810	0.235	-0.561	-1.055
	2	9	-0.258	-0.241	-0.968	0.872	0.607	0.532	-1.128
	3	11	-0.269	-0.244	-0.531	-0.091	0.141	-0.343	-1.253
	4	5	0.318	0.178	-0.263	1.070	0.547	0.261	-1.946
7	1	11	-1.094	-1.222	-1.350	-0.360	0.287	1.399	1.027
	2	11	-0.540	-0.596	-1.032	-0.033	0.322	0.299	-1.215
	3	15	-0.060	-0.004	-0.543	0.535	0.332	0.146	-1.265
	4	7	0.106	-0.071	-0.201	0.984	0.406	1.340	0.210
8	1	9	-1.146	-1.189	-1.613	-0.607	0.329	0.315	-1.293
	2	11	-0.608	-0.507	-1.271	0.064	0.388	-0.032	-1.112
	3	13	-0.209	-0.179	-0.875	0.935	0.523	0.718	-0.391
	4	5	0.278	0.240	-0.161	0.672	0.305	-0.147	-1.574
11	1	10	-1.117	-1.046	-1.690	-0.785	0.298	-0.642	-0.980
	2	15	-0.582	-0.684	-0.935	-0.085	0.306	0.585	-1.376
	3	7	-0.044	-0.465	-0.699	1.912	0.934	1.174	-0.163
	4	6	0.267	0.157	-0.574	1.585	0.743	0.646	-1.043

Table 2. Summary Statistics on Mathematics IRT Difficulty (b) Estimates, as a Function of Grade and Tier

Grade	Tier	n Items	Mean	Median	Min	Max	SD	Skew	Kurtosis
3	1	10	-0.976	-0.980	-1.473	-0.580	0.275	-0.085	-1.098
	2	19	-0.127	-0.168	-0.757	0.588	0.363	0.182	-0.887
	3	16	0.373	0.392	-0.718	1.325	0.587	-0.067	-1.042
	4	5	0.738	0.629	-0.415	2.123	1.028	0.174	-1.938
4	1	9	-0.144	-0.188	-1.318	0.520	0.546	-0.784	-0.236
	2	17	0.085	0.045	-2.023	2.611	1.141	0.351	-0.204
	3	13	0.674	0.715	-0.351	2.611	0.744	1.053	0.923
	4	5	0.549	0.038	-0.018	2.479	1.084	1.048	-0.952
5	1	20	-0.033	-0.065	-1.001	1.532	0.785	0.486	-0.971
	2	21	0.607	0.315	-0.626	3.115	0.828	1.161	1.555
	3	12	1.220	0.921	0.237	2.545	0.714	0.518	-1.147
	4	0	--	--	--	--	--	--	--
6	1	25	-0.391	-0.528	-1.226	1.838	0.689	1.155	1.908
	2	25	-0.035	-0.125	-0.814	1.838	0.558	1.808	3.401
	3	14	0.359	0.219	-0.655	2.690	0.818	1.450	1.987
	4	0	--	--	--	--	--	--	--
7	1	10	-1.091	-1.032	-1.685	-0.688	0.280	-0.674	-0.395
	2	19	-0.073	-0.021	-0.822	0.761	0.479	0.093	-1.369
	3	20	0.515	0.290	-0.175	2.145	0.642	1.351	0.874
	4	5	0.884	0.246	0.186	2.616	1.048	0.753	-1.408
8	1	10	-0.931	-0.898	-1.895	-0.203	0.457	-0.524	-0.246
	2	19	0.039	0.084	-0.791	0.761	0.406	-0.383	-0.416
	3	19	0.239	0.147	-0.527	1.171	0.403	0.469	-0.100
	4	5	1.079	1.021	0.076	2.133	0.855	0.054	-2.038
11	1	10	-0.775	-0.780	-1.198	-0.211	0.300	0.466	-0.996
	2	18	0.133	0.165	-0.319	0.657	0.265	-0.106	-0.848
	3	19	0.355	0.427	-0.170	0.969	0.312	0.139	-1.032
	4	5	0.803	0.670	0.133	1.644	0.685	0.156	-2.137

Figure 1. Histogram of ELA IRT Difficulties

Figure 2. Histogram of Mathematics IRT Difficulties

3. Modeling the Relationship of IRT Difficulty to Grade and Tier

3.1. ELA

For MSAA SY 16-17 ELA, a two-way between analysis of variance (ANOVA) was run in which the dependent variable was IRT difficulty and the two independent variables were grade and tier. There were two main effects, grade and tier, and one interaction, grade x tier.

Table 3 shows the ANOVA summary for ELA. In the ANOVA summary table, for each main effect and interaction, η^{2} is an effect size representing the percent accounted for of the total variance in the dependent variable, IRT difficulty. η^{2} is calculated by the following:
$\eta^{2}=\frac{S S_{\text {Effect }}}{S S_{\text {Total }}}$
where $S S_{\text {Effect }}$ is the sum of squares for either main effect or the interaction and $S S_{\text {Total }}$ is the total sum of squares.

Table 3. ANOVA Summary Table for ELA IRT Difficulties

Effect	$\boldsymbol{d} \boldsymbol{f}$	$\boldsymbol{S S}$	$\boldsymbol{M S}$	\boldsymbol{f}	\boldsymbol{p}	$\boldsymbol{\eta}^{\mathbf{2}}$
Grade	6	2.437	0.406	2.234	0.041	0.025
Tier	3	48.928	16.309	89.711	<0.001	0.499
Grade x Tier	18	3.327	0.185	1.017	0.441	0.034
Residual	239	43.450	0.182			
Total	266	98.142				

$d f=$ degrees of freedom; $S S=$ sum of squares; $M S=$ mean square; $f=$ F-statistic; $p=$ significance level
Regression coefficients and coefficient standard errors (SEs) from the equivalent multiple linear regression formulation are shown in Table 4. The overall R^{2} was 0.557 , which is equal to the sum of the η^{2} values in Table 3. Accordingly, the values of η^{2} can be interpreted as a decomposition of the overall R^{2}.

The regression formulation used dummy coding of grade, tier, and the interaction of grade and tier. Each dummy variable had possible values of 0 or 1 . The number of dummy variables for each effect was equal to one less than the number of levels for the effect. For instance, tier had 4 levels and 3 dummy variables. The dummy variables for tier were labeled as Tier 2, Tier 3, and Tier 4. If an item was a Tier 2 item, that item had a value of 1 on the Tier 2 dummy variable. If an item was a Tier 1, Tier 3, or Tier 4 item, that item had a value of 0 on the Tier 2 dummy variable. All other dummy variables were coded in a similar fashion.

Table 4. Multiple Linear Regression Coefficients and Their Standard Errors (SEs) for ELA Item Difficulties

Variable	Coefficient	SE
Intercept	-1.293	0.142
Grade 4	0.033	0.192
Grade 5	0.163	0.201
Grade 6	0.225	0.188
Grade 7	0.199	0.192
Grade 8	0.146	0.201
Grade 11	0.176	0.196
Tier 2	0.713	0.188
Tier 3	0.892	0.196
Tier 4	0.700	0.256
Grade 4 x Tier 2	0.031	0.273
Grade $5 \times$ Tier 2	0.179	0.280
Grade $6 \times$ Tier 2	0.096	0.266
Grade $7 \times$ Tier 2	-0.159	0.262
Grade $8 \times$ Tier 2	-0.176	0.268
Grade $11 \times$ Tier 2	-0.178	0.256
Grade $4 \times$ Tier 3	0.094	0.259
Grade $5 \times$ Tier 3	-0.033	0.268
Grade $6 \times$ Tier 3	-0.093	0.265
Grade $7 \times$ Tier 3	0.142	0.259
Grade $8 \times$ Tier 3	0.046	0.269
Grade $11 \times$ Tier 3	0.182	0.287
Grade $4 \times$ Tier 4	0.467	0.344
Grade $5 \times$ Tier 4	0.468	0.350
Grade $6 \times$ Tier 4	0.685	0.342
Grade $7 \times$ Tier 4	0.500	0.329
Grade $8 \times$ Tier 4	0.724	0.350
Grade $\mathbf{1 1} \times$ Tier 4	0.684	0.338

The interaction of grade by tier was nonsignificant and had an η^{2} of 0.034 , meaning that the grade by tier interaction only accounted for 3.4% of the total variation in IRT difficulties. Having nonsignificant interaction with very small effect size allows for direct evaluation of each main effect.

The main effect of grade was significant at the 0.05 level, but its η^{2} was only 0.025 (smaller than the effect size of the interaction). It is not surprising that grade accounted for only 2.5% of the variation in IRT difficulties considering the IRT parameters are not on a vertical scale. The main effect for Tier was significant at the 0.001 level and had an η^{2} of 0.499 . Tier accounted for nearly half (49.9\%) of the total variation in IRT difficulty for ELA items.

The results of a Tukey multiple comparison for the main effect of tier are shown in Table 5 and the results for the main effect of grade are shown in Table 6. Figure 6 and Figure 4contain the graphs of the corresponding 95\% confidence intervals. Figure 5and Figure 6contain box plots of ELA IRT difficulties as a function of tier and grade, respectively.

Mean differences between pairs of tiers ranged from 0.274 to 1.227. All mean differences between pairs of tiers had adjusted p-values less than 0.05 . The mean differences of Tier 1 versus Tier 2, Tier 3, or Tier 4 increased as tier increased. That is, the mean difference between Tier 1 and Tier 3 was larger than the mean difference between Tier 1 and Tier 2. Also, the mean difference between Tier 1 and Tier 4 was larger than the mean difference between Tier 1 and Tier 3.

Mean differences between pairs of grades ranged from -0.077 to 0.301 . None of the mean difference for any grade pair had an adjusted p-value that was less than 0.05. (The smallest adjusted p-value observed was equal to 0.303 , for the mean difference between grades 3 and 7.) So while the main effect for grade was significant at the 0.05 level, the lack of significant mean differences aligns with the very small η^{2} for grade of 0.025 .

Table 5. Multiple Comparison Analysis for the Tier Main Effect on Mean ELA IRT Difficulty

Tier Comparison	Mean Difference	SE	\boldsymbol{t}	Adjusted \boldsymbol{p}
Tier 2 vs. Tier 1	0.659	0.072	9.195	<0.001
Tier 3 vs. Tier 1	0.933	0.069	13.453	<0.001
Tier 4 vs. Tier 1	1.227	0.088	14.021	<0.001
Tier 3 vs. Tier 2	0.274	0.069	3.996	<0.001
Tier 4 vs. Tier 2	0.568	0.087	6.533	<0.001
Tier 4 vs. Tier 3	0.294	0.085	3.453	0.004

Table 6. Multiple Comparison Analysis for the Grade Main Effect on Mean ELA IRT Difficulty

Grade	Mean Difference	$\mathbf{S E}$	\mathbf{t}	Adjusted p
Comparison	0.135	0.141	0.959	0.962
Grade 4 vs. Grade 3	0.278	0.144	1.929	0.463
Grade 5 vs. Grade 3	0.268	0.143	1.870	0.502
Grade 6 vs. Grade 3	0.301	0.137	2.191	0.303
Grade 7 vs. Grade 3	0.231	0.142	1.624	0.667
Grade 8 vs. Grade 3	0.224	0.142	1.575	0.698
Grade 11 vs. Grade 3	0.142	0.140	1.015	0.950
Grade 5 vs. Grade 4	0.132	0.139	0.949	0.964
Grade 6 vs. Grade 4	0.166	0.133	1.242	0.877
Grade 7 vs. Grade 4				

continued

Grade Comparison	Mean Difference	SE	\mathbf{t}	Adjusted p
Grade 8 vs. Grade 4	0.095	0.138	0.689	0.993
Grade 11 vs. Grade 4	0.088	0.138	0.639	0.995
Grade 6 vs. Grade 5	-0.010	0.142	-0.072	1.000
Grade 7 vs. Grade 5	0.023	0.136	0.171	1.000
Grade 8 vs. Grade 5	-0.047	0.141	-0.333	1.000
Grade 11 vs. Grade 5	-0.054	0.141	-0.382	1.000
Grade 7 vs. Grade 6	0.034	0.135	0.248	1.000
Grade 8 vs. Grade 6	-0.037	0.140	-0.263	1.000
Grade 11 vs. Grade 6	-0.044	0.140	-0.312	1.000
Grade 8 vs. Grade 7	-0.070	0.134	-0.524	0.998
Grade 11 vs. Grade 7	-0.077	0.134	-0.575	0.997
Grade 11 vs. Grade 8	-0.007	0.139	-0.050	1.000

Figure 3. Mean Differences and Confidence Interval Bands for ELA IRT Difficulty, as a Function of Pairs of Tiers

Figure 4. Mean Differences and Confidence Interval Bands for ELA IRT Difficulty, as a Function of Pairs of Grades

Figure 5. Box Plot of ELA IRT Difficulty, as a Function of Tier

Figure 6. Box Plot of ELA IRT Difficulty, as a Function of Grade

3.2. Mathematics

For MSAA SY 16-17 mathematics, a two-way between analysis of variance (ANOVA) was run in which the dependent variable was IRT difficulty and the two independent variables were grade and tier. There were two main effects, grade and tier, and one interaction, grade x tier. The input dataset consisted of one observation (row) per mathematics item and columns of IRT difficulty, grade (i.e., $3,4,5,6,7,8$, or 11), and tier (1, 2, 3, or 4) per mathematics item.

Table 7shows the ANOVA summary for mathematics. The regression coefficients and coefficient standard errors (SEs) from the equivalent multiple linear regression formulation are in Table 8. The overall R^{2} was 0.414 , which is equal to the sum of the η^{2} in Table 7. Note that there were no coefficients reported for two dummy variables, namely that of Tier 4 at grades 5 and 6 . This is because there were no Tier 4 items for grades 5 and 6 in the SY 16-17 dataset analyzed.

Table 7. ANOVA Summary Table for Mathematics Item Difficulties

Effect	$\boldsymbol{d f}$	$\boldsymbol{S S}$	$\boldsymbol{M S}$	\boldsymbol{f}	\boldsymbol{p}	$\boldsymbol{\eta}^{\mathbf{2}}$
Grade	6	13.676	2.2793	5.6424	<0.001	0.058
Tier	3	76.334	25.4445	62.9867	<0.001	0.322
Grade x Tier	16	8.336	0.521	1.2897	0.201	0.035
Residual	344	138.964	0.404	--	--	--
Total	369	237.31				

$d f=$ degrees of freedom; $S S=$ sum of squares; $M S=$ mean square; $f=$ F-statistic; $p=$ significance level
As done with ELA, the regression formulation for mathematics used dummy coding of grade, tier, and the interaction of grade and tier. Each dummy variable had possible values of 0 or 1. The number of dummy variables for each effect was equal to one less than the number of levels for the effect. For instance, tier had 4 levels and 3 dummy variables. The dummy variables for tier were labeled as Tier 2, Tier 3, and Tier 4. If an item was a Tier 2 item, that item had a value of 1 on the Tier 2 dummy variable. If an item was a Tier 1, Tier 3, or Tier 4 item, that item had a value of 0 on the Tier 2 dummy variable. All other dummy variables were coded in a similar fashion.

Table 8. Multiple Linear Regression Coefficients and Their Standard Errors (SEs) for Mathematics Item Difficulties

Variable	Coefficient	SE
Intercept	-0.976	0.201
Grade 4	0.832	0.292
Grade 5	0.943	0.246
Grade 6	0.585	0.238
Grade 7	-0.114	0.284
Grade 8	0.046	0.284
Grade 11	0.202	0.284
Tier 2	0.850	0.248
Tier 3	1.350	0.256
Tier 4	1.714	0.348
Grade $4 \times$ Tier 2	-0.621	0.361
Grade $5 \times$ Tier 2	-0.210	0.318
Grade $6 \times$ Tier 2	-0.493	0.307
Grade $7 \times$ Tier 2	0.168	0.351
Grade $8 \times$ Tier 2	0.120	0.351
Grade $11 \times$ Tier 2	0.058	0.353
Grade $4 \times$ Tier 3	-0.531	0.376
Grade $5 \times$ Tier 3	-0.096	0.346
Grade $6 \times$ Tier 3	-0.599	0.333
Grade $7 \times$ Tier 3	0.256	0.355
Grade $8 \times$ Tier 3	-0.180	0.357
Grade $11 \times$ Tier 3	-0.219	0.357
Grade $4 \times$ Tier 4	-1.021	0.497
Grade $7 \times$ Tier 4	0.261	0.492
Grade $8 \times$ Tier 4	0.296	0.492
Grade $11 \times$ Tier 4	-0.136	0.492

The interaction of grade by tier was nonsignificant and had an η^{2} of 0.035 , meaning that the grade by tier interaction only accounted for 3.5% of the total variation in IRT difficulties. Having nonsignificant interaction with very small effect size allows for direct evaluation of each main effect. The main effect of grade was significant at the 0.001 level, but its η^{2} was only 0.058 . The main effect for tier was significant at the 0.001 level and had an η^{2} of 0.322 . Tier accounted for 32.2% of the total variation in IRT difficulty for mathematics items, whereas tier accounted for nearly half of the total variation in IRT difficulty for ELA items.

The results of a Tukey multiple comparison for the main effect of tier are shown in Table 9 and the results for the main effect of grade are shown in Table 10. Figure 7and Figure 8 contain the graphs of the corresponding 95% confidence intervals. Figure 9 and Figure 10 contain box plots of mathematics IRT difficulties as a function of tier and grade, respectively.

Mean differences between pairs of tier ranged from 0.315 to 1.337. All mean differences between pairs of tiers, except for Tier 3 versus Tier 4, had adjusted p-values less than 0.05 . The mean differences of Tier 1 versus Tier 2, Tier 3, or Tier 4 increased as tier increased. That is, the mean difference between Tier 1 and Tier 3 was larger than the mean difference between Tier 1 and Tier 2. Also, the mean difference between Tier 1 and Tier 4 was larger than the mean difference between Tier 1 and Tier 3.

Mean differences between pairs of grades ranged from -0.592 to 0.554 . Only 4 out of 21 grade pairings had adjusted p-values less than 0.05 . These 4 pairings were grade 5 versus each of grades $3,6,7$, and 8 . So while the main effect for grade was significant at the 0.05 level, the few pairings of grades had significant mean differences. This finding is in line with the very small η^{2} for grade of 0.058 .

Table 9. Multiple Comparison Analysis for the Tier Main Effect on Mean Mathematics IRT Difficulty

Tier	Mean Difference	SE	\boldsymbol{t}	Adjusted \boldsymbol{p}
Comparison	0.618	0.091	0.618	0.091
Tier 2 vs. Tier 1	1.022	0.095	1.022	0.095
Tier 3 vs. Tier 1	1.337	0.153	1.337	0.153
Tier 4 vs. Tier 1	0.404	0.087	0.404	0.087
Tier 3 vs. Tier 2	0.719	0.148	0.719	0.148
Tier 4 vs. Tier 2	0.315	0.151	0.315	0.151
Tier 4 vs. Tier 3				

Table 10. Multiple Comparison Analysis for the Tier Main Effect on Mean Mathematics IRT Difficulty

Tier Comparison	Mean Difference	SE	\boldsymbol{t}	Adjusted \boldsymbol{p}
Grade 4 vs. Grade 3	0.315	0.162	1.942	0.453
Grade 5 vs. Grade 3	0.554	0.155	3.583	0.007
Grade 6 vs. Grade 3	-0.037	0.148	-0.252	1.000
Grade 7 vs. Grade 3	0.095	0.154	0.618	0.996
Grade 8 vs. Grade 3	0.076	0.155	0.492	0.999
Grade 11 vs. Grade 3	0.155	0.155	0.994	0.955
Grade 5 vs. Grade 4	0.239	0.160	1.495	0.747
Grade 6 vs. Grade 4	-0.352	0.154	-2.293	0.250
Grade 7 vs. Grade 4	-0.220	0.159	-1.380	0.812
Grade 8 vs. Grade 4	-0.239	0.160	-1.493	0.748
Grade 11 vs. Grade 4	-0.161	0.161	-0.999	0.954
Grade 6 vs. Grade 5	-0.592	0.146	-4.059	0.001
Grade 7 vs. Grade 5	-0.459	0.152	-3.027	0.042
Grade 8 vs. Grade 5	-0.478	0.152	-3.137	0.030
Grade 11 vs. Grade 5	-0.400	0.153	-2.611	0.126

continued

Tier Comparison	Mean Difference	SE	\boldsymbol{t}	Adjusted \boldsymbol{p}
Grade 7 vs. Grade 6	0.132	0.145	0.913	0.970
Grade 8 vs. Grade 6	0.113	0.146	0.778	0.987
Grade 11 vs. Grade 6	0.192	0.147	1.309	0.847
Grade 8 vs. Grade 7	-0.019	0.152	-0.125	1.000
Grade 11 vs. Grade 7	0.059	0.153	0.389	1.000
Grade 11 vs. Grade 8	0.078	0.153	0.512	0.999

Figure 7. Mean Differences and Confidence Interval Bands for Mathematics IRT Difficulty, as a Function of Pairs of Tiers

Figure 8. Mean Differences and Confidence Interval Bands for Mathematics IRT Difficulty, as a Function of Pairs of Grades

Figure 9. Box Plot of Mathematics IRT Difficulty, as a Function of Tier

Figure 10. Box Plot of Mathematics IRT Difficulty, as a Function of Grade

4. Conclusions

In summary, in ELA and in mathematics, the interaction between grade and tier was not statistically significant and accounted for a negligible percent of the total variation in IRT difficulties. The main effects on grade and tier were statistically significant in both ELA and mathematics; however, whereas the main effect of grade accounted for a very small percent of the total variation in IRT difficulties in either ELA or mathematics, the main effect of tier accounted for nearly half the total variation in IRT difficulties in ELA and a little over 30% of the total variation in IRT difficulties in mathematics. Therefore, the results presented provide evidence of a strong relationship between tier and IRT difficulty.

This page intentionally [eft lolank

This page intentionally [eft [oโank

It's all about student learning.
M easuredprogress.org

APPENDIX K-TEST CHARACTERISTIC CURVES \& TEST INFORMATION FUNCTIONS

Figure K-1. 2016-17 MSAA: Test Characteristic Curve for Grade 3 Mathematics

Figure K-2. 2016-17 MSAA: Test Information Function and Standard Error for Grade 3 Mathematics

Figure K-3. 2016-17 MSAA: Test Characteristic Curve for Grade 4 Mathematics

Figure K-4. 2016-17 MSAA: Test Information Function and Standard Error for Grade 4 Mathematics

Figure K-5. 2016-17 MSAA: Test Characteristic Curve for Grade 5 Mathematics

Figure K-6. 2016-17 MSAA: Test Information Function and Standard Error for Grade 5 Mathematics

Figure K-7. 2016-17 MSAA: Test Characteristic Curve for Grade 6 Mathematics

Figure K-8. 2016-17 MSAA: Test Information Function and Standard Error for Grade 6 Mathematics

Figure K-9. 2016-17 MSAA: Test Characteristic Curve for Grade 7 Mathematics

Figure K-10. 2016-17 MSAA: Test Information Function and Standard Error for Grade 7 Mathematics

Figure K-11. 2016-17 MSAA: Test Characteristic Curve for Grade 8 Mathematics

Figure K-12. 2016-17 MSAA: Test Information Function and Standard Error for Grade 8 Mathematics

Figure K-13. 2016-17 MSAA: Test Characteristic Curve for Grade 11 Mathematics

Figure K-14. 2016-17 MSAA: Test Information Function and Standard Error for Grade 11 Mathematics

Figure K-15. 2016-17 MSAA: Test Characteristic Curve for Grade 3 ELA

Figure K-16. 2016-17 MSAA: Test Information Function and Standard Error for Grade 3 ELA

Figure K-17. 2016-17 MSAA: Test Characteristic Curve for Grade 4 ELA

Figure K-18. 2016-17 MSAA: Test Information Function and Standard Error for Grade 4 ELA

Figure K-19. 2016-17 MSAA: Test Characteristic Curve for Grade 5 ELA

Figure K-20. 2016-17 MSAA: Test Information Function and Standard Error for Grade 5 ELA

Figure K-21. 2016-17 MSAA: Test Characteristic Curve for Grade 6 ELA

Figure K-22. 2016-17 MSAA: Test Information Function and Standard Error for Grade 6 ELA

Figure K-23. 2016-17 MSAA: Test Characteristic Curve for Grade 7 ELA

Figure K-24. 2016-17 MSAA: Test Information Function and Standard Error for Grade 7 ELA

Figure K-25. 2016-17 MSAA: Test Characteristic Curve for Grade 8 ELA

Figure K-26. 2016-17 MSAA: Test Information Function and Standard Error for Grade 8 ELA

Figure K-27. 2016-17 MSAA: Test Characteristic Curve for Grade 11 ELA

Figure K-28. 2016-17 MSAA: Test Information Function and Standard Error for Grade 11 ELA

APPENDIX L—RAW TO SCALED SCORE LOOK-UP TABLES

Table L-1. 2016-17 MSAA: Raw to Scaled Score Look-up Table— ELA Grade 3

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	$\begin{aligned} & \text { Performance } \\ & \text { Level } \end{aligned}$	Scaled Score	Standard Error	$\begin{aligned} & \text { Performance } \\ & \text { Level } \end{aligned}$
A	0	1200	18.3	1	1200	22.2	1
	1	1200	13.3	1	1200	16.2	1
	2	1201	8.9	1	1200	11.0	1
	3	1207	6.8	1	1206	7.7	1
	4	1211	5.7	1	1211	6.1	1
	5	1214	5.0	1	1215	5.2	1
	6	1217	4.6	1	1218	4.6	1
	7	1219	4.3	1	1220	4.2	1
	8	1221	4.1	1	1222	3.8	1
	9	1222	3.9	1	1224	3.6	1
	10	1224	3.8	1	1226	3.4	1
	11	1226	3.7	1	1228	3.2	1
	12	1227	3.6	1	1230	3.1	1
	13	1229	3.6	1	1231	3.0	1
	14	1230	3.6	1	1233	2.9	1
	15	1231	3.6	1	1235	2.8	2
	16	1233	3.6	1	1236	2.7	2
	17	1234	3.6	2	1238	2.7	2
	18	1236	3.7	2	1240	2.6	3
	19	1237	3.8	2	1242	2.6	3
	20	1239	3.9	2	1244	2.7	3
	21	1241	4.1	3	1246	2.8	3
	22	1242	4.3	3	1248	3.0	3
	23	1244	4.5	3	1250	3.3	3
	24	1247	4.8	3	1252	3.7	4
	25	1249	5.2	3	1256	4.5	4
	26	1252	5.8	4	1260	5.9	4
	27	1255	6.6	4	1267	8.5	4
	28	1260	7.6	4	1278	13.8	4
	29	1265	9.4	4	1289	20.1	4
	30	1274	12.5	4	1290	20.1	4
	31	1289	20.1	4	1290	20.1	4
	32	1290	20.1	4	1290	20.1	4
B	0	1200	19.4	1	1200	22.2	1
	1	1200	14.4	1	1200	16.2	1
	2	1201	10.0	1	1200	11.0	1
	3	1207	7.5	1	1206	7.7	1
	4	1211	6.3	1	1211	6.1	1
	5	1215	5.5	1	1215	5.2	1
	6	1217	5.0	1	1218	4.6	1
	7	1220	4.6	1	1220	4.2	1
	8	1222	4.3	1	1222	3.8	1
	9	1224	4.1	1	1224	3.6	1
	10	1226	4.0	1	1226	3.4	1

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
B	11	1227	3.9	1	1228	3.2	1
	12	1229	3.8	1	1230	3.1	1
	13	1230	3.8	1	1231	3.0	1
	14	1232	3.7	1	1233	2.9	1
	15	1233	3.7	1	1235	2.8	2
	16	1235	3.8	2	1236	2.7	2
	17	1236	3.8	2	1238	2.7	2
	18	1238	3.9	2	1240	2.6	3
	19	1239	4.0	2	1242	2.6	3
	20	1241	4.1	3	1244	2.7	3
	21	1243	4.2	3	1246	2.8	3
	22	1245	4.4	3	1248	3.0	3
	23	1247	4.7	3	1250	3.3	3
	24	1249	5.0	3	1252	3.7	4
	25	1252	5.5	4	1256	4.5	4
	26	1254	6.1	4	1260	5.9	4
	27	1258	6.9	4	1267	8.5	4
	28	1262	8.0	4	1278	13.8	4
	29	1268	9.8	4	1289	20.1	4
	30	1277	12.9	4	1290	20.1	4
	31	1289	18.7	4	1290	20.1	4
	32	1290	18.7	4	1290	20.1	4
C	0	1200	19.4	1	1200	22.2	1
	1	1200	14.7	1	1200	16.2	1
	2	1200	10.3	1	1200	11.0	1
	3	1206	7.8	1	1206	7.7	1
	4	1211	6.5	1	1211	6.1	1
	5	1214	5.6	1	1215	5.2	1
	6	1217	5.1	1	1218	4.6	1
	7	1220	4.7	1	1220	4.2	1
	8	1222	4.4	1	1222	3.8	1
	9	1224	4.2	1	1224	3.6	1
	10	1225	4.1	1	1226	3.4	1
	11	1227	3.9	1	1228	3.2	1
	12	1229	3.9	1	1230	3.1	1
	13	1230	3.8	1	1231	3.0	1
	14	1232	3.8	1	1233	2.9	1
	15	1233	3.8	1	1235	2.8	2
	16	1235	3.8	2	1236	2.7	2
	17	1236	3.9	2	1238	2.7	2
	18	1238	3.9	2	1240	2.6	3
	19	1239	4.0	2	1242	2.6	3
	20	1241	4.2	3	1244	2.7	3
	21	1243	4.3	3	1246	2.8	3
	22	1245	4.5	3	1248	3.0	3
	23	1247	4.8	3	1250	3.3	3
	24	1249	5.1	3	1252	3.7	4
	25	1252	3.9	4	1256	4.5	4

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
C	26	1255	5.6	4	1260	5.9	4
	27	1258	6.2	4	1267	8.5	4
	28	1263	7.0	4	1278	13.8	4
	29	1268	8.1	4	1289	20.1	4
	30	1277	9.9	4	1290	20.1	4
	31	1289	13.1	4	1290	20.1	4
	32	1290	18.7	4	1290	20.1	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score look-up for 2016 is repeated three times in the table.

Table L-2. 2016-17 MSAA: Raw to Scaled Score Look-up TableELA Grade 4

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	20.2	1	1200	23.5	1
	1	1200	15.6	1	1200	18.4	1
	2	1200	11.5	1	1200	14.1	1
	3	1202	8.6	1	1200	10.0	1
	4	1207	7.0	1	1206	7.7	1
	5	1211	6.0	1	1211	6.3	1
	6	1214	5.3	1	1215	5.3	1
	7	1216	4.8	1	1218	4.6	1
	8	1218	4.4	1	1220	4.1	1
	9	1220	4.1	1	1222	3.7	1
	10	1222	3.8	1	1224	3.4	1
	11	1224	3.7	1	1226	3.2	1
	12	1225	3.5	1	1228	3.0	1
	13	1227	3.4	1	1229	2.9	1
	14	1228	3.4	1	1231	2.8	1
	15	1230	3.4	1	1233	2.7	1
	16	1231	3.4	1	1234	2.6	2
	17	1232	3.4	1	1236	2.6	2
	18	1234	3.5	2	1237	2.6	2
	19	1235	3.7	2	1239	2.7	2
	20	1237	3.8	2	1241	2.8	3
	21	1239	4.0	2	1243	2.9	3
	22	1241	4.3	3	1245	3.1	3
	23	1243	4.6	3	1247	3.4	3
	24	1245	5.0	3	1249	3.8	3
	25	1248	5.6	3	1252	4.5	3
	26	1251	6.3	3	1256	5.5	3
	27	1255	7.2	3	1261	7.3	4
	28	1259	8.6	4	1269	10.3	4
	29	1266	10.6	4	1280	15.2	4
	30	1275	14.3	4	1288	19.4	4

Path	Raw Score	2017			2016		
		$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
C	7	1218	5.0	1	1218	4.6	1
	8	1221	4.6	1	1220	4.1	1
	9	1223	4.3	1	1222	3.7	1
	10	1225	4.1	1	1224	3.4	1
	11	1226	4.0	1	1226	3.2	1
	12	1228	3.9	1	1228	3.0	1
	13	1230	3.8	1	1229	2.9	1
	14	1231	3.8	1	1231	2.8	1
	15	1233	3.8	1	1233	2.7	1
	16	1234	3.8	2	1234	2.6	2
	17	1236	3.9	2	1236	2.6	2
	18	1237	3.9	2	1237	2.6	2
	19	1239	4.1	2	1239	2.7	2
	20	1241	4.2	3	1241	2.8	3
	21	1243	4.4	3	1243	2.9	3
	22	1245	4.7	3	1245	3.1	3
	23	1247	5.0	3	1247	3.4	3
	24	1249	5.4	3	1249	3.8	3
	25	1252	5.9	3	1252	4.5	3
	26	1255	6.7	3	1256	5.5	3
	27	1259	7.7	4	1261	7.3	4
	28	1264	9.1	4	1269	10.3	4
	29	1271	11.4	4	1280	15.2	4
	30	1281	15.4	4	1288	19.4	4
	31	1288	18.6	4	1290	19.4	4
	32	1290	18.6	4	1290	19.4	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score look-up for 2016 is repeated three times in the table.

Table L-3. 2016-17 MSAA: Raw to Scaled Score Look-up TableELA Grade 5

Path		2017			2016		
	Raw	Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	23.3	1	1200	26.5	1
	1	1200	15.6	1	1200	19.1	1
	2	1202	9.4	1	1200	12.6	1
	3	1208	7.0	1	1205	8.7	1
	4	1212	5.8	1	1210	6.8	1
	5	1215	5.0	1	1214	5.7	1
	6	1218	4.5	1	1217	5.0	1
	7	1220	4.1	1	1220	4.5	1
	8	1222	3.9	1	1222	4.1	1
	9	1224	3.7	1	1224	3.9	1
	10	1225	3.6	1	1226	3.8	1
	11	1227	3.5	1	1228	3.6	1

Path		2017			2016		
	$\begin{aligned} & \text { Raw } \\ & \text { Score } \end{aligned}$	Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance
	12	1228	3.4	1	1230	3.6	1
	13	1229	3.4	1	1232	3.6	2
	14	1231	3.4	1	1233	3.6	2
	15	1232	3.4	2	1235	3.7	2
	16	1234	3.5	2	1236	3.8	2
	17	1235	3.6	2	1238	3.9	2
	18	1237	3.7	2	1240	4.1	3
	19	1238	3.8	2	1242	4.4	3
	20	1239	4.0	2	1244	4.7	3
	21	1242	4.3	3	1247	5.1	3
A	22	1244	4.5	3	1250	5.7	3
	23	1246	4.9	3	1253	6.4	3
	24	1248	5.3	3	1258	7.4	4
	25	1251	5.8	3	1263	8.9	4
	26	1254	6.5	3	1270	11.1	4
	27	1258	7.4	4	1280	14.9	4
	28	1263	8.7	4	1290	20.0	4
	29	1270	10.8	4	1290	20.0	4
	30	1280	14.8	4	1290	20.0	4
	31	1290	20.5	4	1290	20.0	4
	32	1290	20.5	4	1290	20.0	4
	0	1200	23.4	1	1200	26.5	1
	1	1200	16.1	1	1200	19.1	1
	2	1201	10.0	1	1200	12.6	1
	3	1208	7.5	1	1205	8.7	1
	4	1212	6.1	1	1210	6.8	1
	5	1216	5.3	1	1214	5.7	1
	6	1218	4.8	1	1217	5.0	1
	7	1220	4.4	1	1220	4.5	1
	8	1222	4.2	1	1222	4.1	1
	9	1224	4.0	1	1224	3.9	1
	10	1226	3.9	1	1226	3.8	1
	11	1228	3.8	1	1228	3.6	1
	12	1229	3.8	1	1230	3.6	1
B	13	1231	3.8	1	1232	3.6	2
	14	1232	3.8	2	1233	3.6	2
	15	1234	3.8	2	1235	3.7	2
	16	1235	3.9	2	1236	3.8	2
	17	1237	4.0	2	1238	3.9	2
	18	1239	4.1	2	1240	4.1	3
	19	1240	4.2	3	1242	4.4	3
	20	1242	4.4	3	1244	4.7	3
	21	1244	4.6	3	1247	5.1	3
	22	1246	4.9	3	1250	5.7	3
	23	1248	5.2	3	1253	6.4	3
	24	1251	5.5	3	1258	7.4	4
	25	1254	6.0	3	1263	8.9	4
	26	1257	6.7	4	1270	11.1	4

Path		2017			2016		
	Score	Scaled	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
B	27	1261	7.5	4	1280	14.9	4
	28	1266	8.8	4	1290	20.0	4
	29	1272	10.9	4	1290	20.0	4
	30	1282	14.7	4	1290	20.0	4
	31	1290	19.1	4	1290	20.0	4
	32	1290	19.1	4	1290	20.0	4
C	0	1200	24.7	1	1200	26.5	1
	1	1200	17.2	1	1200	19.1	1
	2	1200	10.8	1	1200	12.6	1
	3	1207	8.0	1	1205	8.7	1
	4	1212	6.5	1	1210	6.8	1
	5	1215	5.6	1	1214	5.7	1
	6	1218	5.1	1	1217	5.0	1
	7	1221	4.7	1	1220	4.5	1
	8	1223	4.4	1	1222	4.1	1
	9	1225	4.2	1	1224	3.9	1
	10	1226	4.1	1	1226	3.8	1
	11	1228	4.0	1	1228	3.6	1
	12	1230	3.9	1	1230	3.6	1
	13	1232	3.9	2	1232	3.6	2
	14	1233	3.9	2	1233	3.6	2
	15	1234	3.9	2	1235	3.7	2
	16	1236	4.0	2	1236	3.8	2
	17	1238	4.1	2	1238	3.9	2
	18	1239	4.2	2	1240	4.1	3
	19	1241	4.4	3	1242	4.4	3
	20	1243	4.5	3	1244	4.7	3
	21	1245	4.7	3	1247	5.1	3
	22	1247	5.0	3	1250	5.7	3
	23	1250	5.3	3	1253	6.4	3
	24	1252	5.8	3	1258	7.4	4
	25	1255	6.3	3	1263	8.9	4
	26	1259	7.0	4	1270	11.1	4
	27	1263	7.9	4	1280	14.9	4
	28	1268	9.4	4	1290	20.0	4
	29	1275	11.7	4	1290	20.0	4
	30	1286	16.2	4	1290	20.0	4
	31	1290	18.7	4	1290	20.0	4
	32	1290	18.7	4	1290	20.0	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score look-up for 2016 is repeated three times in the table.

Table L-4. 2016-17 MSAA: Raw to Scaled Score Look-up TableELA Grade 6

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	24.8	1	1200	22.8	1
	1	1200	11.4	1	1200	15.9	1
	2	1205	6.9	1	1200	10.0	1
	3	1209	5.2	1	1204	7.3	1
	4	1212	4.3	1	1209	5.8	1
	5	1214	3.8	1	1212	5.0	1
	6	1216	3.5	1	1214	4.4	1
	7	1218	3.2	1	1217	4.1	1
	8	1219	3.1	1	1219	3.8	1
	9	1221	2.9	1	1220	3.6	1
	10	1222	2.9	1	1222	3.5	1
	11	1223	2.8	1	1224	3.4	1
	12	1224	2.8	1	1225	3.4	1
	13	1225	2.8	1	1227	3.4	1
	14	1226	2.8	1	1228	3.4	1
	15	1228	2.8	1	1229	3.4	1
	16	1229	2.9	1	1231	3.5	2
	17	1230	2.9	1	1232	3.5	2
	18	1231	3.0	2	1234	3.7	2
	19	1232	3.2	2	1236	3.8	2
	20	1234	3.3	2	1238	4.0	2
	21	1235	3.5	2	1239	4.3	2
	22	1237	3.7	2	1242	4.6	3
	23	1239	4.0	2	1244	5.0	3
	24	1241	4.4	3	1247	5.5	3
	25	1243	4.8	3	1251	6.3	3
	26	1246	5.3	3	1255	7.4	4
	27	1249	6.0	3	1261	9.2	4
	28	1253	7.0	4	1271	12.7	4
	29	1258	8.4	4	1287	21.2	4
	30	1265	10.8	4	1290	21.2	4
	31	1277	16.3	4	1290	21.2	4
	32	1290	22.4	4	1290	21.2	4
B	0	1200	27.0	1	1200	22.8	1
	1	1200	17.2	1	1200	15.9	1
	2	1201	9.6	1	1200	10.0	1
	3	1207	6.7	1	1204	7.3	1
	4	1211	5.3	1	1209	5.8	1
	5	1214	4.5	1	1212	5.0	1
	6	1216	4.0	1	1214	4.4	1
	7	1218	3.6	1	1217	4.1	1
	8	1220	3.4	1	1219	3.8	1
	9	1222	3.3	1	1220	3.6	1
	10	1223	3.2	1	1222	3.5	1
	11	1224	3.1	1	1224	3.4	1
	12	1226	3.1	1	1225	3.4	1

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
B	13	1227	3.2	1	1227	3.4	1
	14	1228	3.2	1	1228	3.4	1
	15	1230	3.3	1	1229	3.4	1
	16	1231	3.4	2	1231	3.5	2
	17	1233	3.5	2	1232	3.5	2
	18	1234	3.7	2	1234	3.7	2
	19	1236	3.9	2	1236	3.8	2
	20	1238	4.1	2	1238	4.0	2
	21	1239	4.4	2	1239	4.3	2
	22	1242	4.7	3	1242	4.6	3
	23	1244	5.0	3	1244	5.0	3
	24	1246	5.5	3	1247	5.5	3
	25	1249	6.0	3	1251	6.3	3
	26	1253	6.7	4	1255	7.4	4
	27	1257	7.7	4	1261	9.2	4
	28	1262	9.0	4	1271	12.7	4
	29	1269	11.2	4	1287	21.2	4
	30	1279	15.1	4	1290	21.2	4
	31	1287	18.9	4	1290	21.2	4
	32	1290	18.9	4	1290	21.2	4
C	0	1200	27.6	1	1200	22.8	1
	1	1200	17.3	1	1200	15.9	1
	2	1201	9.6	1	1200	10.0	1
	3	1208	6.7	1	1204	7.3	1
	4	1212	5.2	1	1209	5.8	1
	5	1215	4.4	1	1212	5.0	1
	6	1217	3.9	1	1214	4.4	1
	7	1219	3.6	1	1217	4.1	1
	8	1220	3.4	1	1219	3.8	1
	9	1222	3.3	1	1220	3.6	1
	10	1223	3.2	1	1222	3.5	1
	11	1225	3.2	1	1224	3.4	1
	12	1226	3.2	1	1225	3.4	1
	13	1228	3.2	1	1227	3.4	1
	14	1229	3.3	1	1228	3.4	1
	15	1231	3.4	2	1229	3.4	1
	16	1232	3.5	2	1231	3.5	2
	17	1233	3.6	2	1232	3.5	2
	18	1235	3.8	2	1234	3.7	2
	19	1237	4.0	2	1236	3.8	2
	20	1239	4.3	2	1238	4.0	2
	21	1241	4.6	3	1239	4.3	2
	22	1243	4.9	3	1242	4.6	3
	23	1245	5.3	3	1244	5.0	3
	24	1248	5.8	3	1247	5.5	3
	25	1251	6.5	3	1251	6.3	3
	26	1255	7.2	4	1255	7.4	4
	27	1259	8.3	4	1261	9.2	4

Path	Raw	2017							
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level		
		1264	9.7	4	1271	12.7	4		
	29	1272	11.9	4	1287	21.2	4		
	30	1282	15.5	4	1290	21.2	4		
	31	1287	17.6	4	1290	21.2	4		
	32	1290	17.6	4	1290	21.2	4		

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-5. 2016-17 MSAA: Raw to Scaled Score Look-up Table— ELA Grade 7

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	23.9	1	1200	24.5	1
	1	1200	15.0	1	1200	17.2	1
	2	1205	8.7	1	1201	10.8	1
	3	1211	6.3	1	1209	7.6	1
	4	1215	5.0	1	1214	5.9	1
	5	1218	4.3	1	1217	4.8	1
	6	1220	3.8	1	1220	4.2	1
	7	1222	3.5	1	1222	3.7	1
	8	1223	3.3	1	1224	3.4	1
	9	1225	3.1	1	1226	3.2	1
	10	1226	3.0	1	1227	3.0	1
	11	1227	2.9	1	1229	2.9	1
	12	1228	2.8	1	1230	2.8	1
	13	1230	2.8	1	1231	2.8	1
	14	1231	2.8	1	1233	2.8	1
	15	1232	2.8	1	1234	2.9	1
	16	1233	2.9	1	1236	3.0	2
	17	1234	2.9	1	1237	3.2	2
	18	1236	3.0	2	1238	3.4	2
	19	1237	3.1	2	1240	3.6	3
	20	1238	3.3	2	1242	3.9	3
	21	1239	3.5	2	1245	4.3	3
	22	1242	3.7	3	1247	4.8	3
	23	1243	4.0	3	1250	5.5	3
	24	1245	4.4	3	1255	6.5	4
	25	1248	4.9	3	1259	7.9	4
	26	1251	5.5	3	1266	10.1	4
	27	1254	6.3	3	1277	13.9	4
	28	1258	7.5	4	1290	20.4	4
	29	1264	9.2	4	1290	20.4	4
	30	1272	12.1	4	1290	20.4	4
	31	1285	18.4	4	1290	20.4	4
	32	1290	21.8	4	1290	20.4	4
B	0	1200	23.2	1	1200	24.5	1
	1	1200	16.6	1	1200	17.2	1
	2	1202	10.9	1	1201	10.8	1

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
B	3	1209	8.0	1	1209	7.6	1
	4	1214	6.4	1	1214	5.9	1
	5	1217	5.4	1	1217	4.8	1
	6	1220	4.7	1	1220	4.2	1
	7	1222	4.3	1	1222	3.7	1
	8	1224	4.0	1	1224	3.4	1
	9	1226	3.7	1	1226	3.2	1
	10	1228	3.6	1	1227	3.0	1
	11	1229	3.5	1	1229	2.9	1
	12	1231	3.4	1	1230	2.8	1
	13	1232	3.4	1	1231	2.8	1
	14	1233	3.4	1	1233	2.8	1
	15	1235	3.4	1	1234	2.9	1
	16	1236	3.5	2	1236	3.0	2
	17	1238	3.6	2	1237	3.2	2
	18	1239	3.7	2	1238	3.4	2
	19	1241	3.9	3	1240	3.6	3
	20	1243	4.1	3	1242	3.9	3
	21	1245	4.4	3	1245	4.3	3
	22	1247	4.7	3	1247	4.8	3
	23	1249	5.0	3	1250	5.5	3
	24	1251	5.5	3	1255	6.5	4
	25	1255	6.0	4	1259	7.9	4
	26	1257	6.7	4	1266	10.1	4
	27	1261	7.5	4	1277	13.9	4
	28	1266	8.7	4	1290	20.4	4
	29	1272	10.3	4	1290	20.4	4
	30	1280	13.0	4	1290	20.4	4
	31	1290	17.9	4	1290	20.4	4
	32	1290	17.9	4	1290	20.4	4
C	0	1200	23.0	1	1200	24.5	1
	1	1200	17.1	1	1200	17.2	1
	2	1200	11.8	1	1201	10.8	1
	3	1208	8.8	1	1209	7.6	1
	4	1213	7.0	1	1214	5.9	1
	5	1216	5.9	1	1217	4.8	1
	6	1219	5.1	1	1220	4.2	1
	7	1222	4.5	1	1222	3.7	1
	8	1224	4.2	1	1224	3.4	1
	9	1226	3.9	1	1226	3.2	1
	10	1228	3.7	1	1227	3.0	1
	11	1229	3.6	1	1229	2.9	1
	12	1231	3.5	1	1230	2.8	1
	13	1232	3.5	1	1231	2.8	1
	14	1234	3.5	1	1233	2.8	1
	15	1236	3.5	2	1234	2.9	1
	16	1237	3.6	2	1236	3.0	2
	17	1238	3.7	2	1237	3.2	2

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
C	18	1239	3.9	2	1238	3.4	2
	19	1242	4.0	3	1240	3.6	3
	20	1243	4.3	3	1242	3.9	3
	21	1245	4.5	3	1245	4.3	3
	22	1247	4.8	3	1247	4.8	3
	23	1250	5.2	3	1250	5.5	3
	24	1252	5.7	3	1255	6.5	4
	25	1255	6.3	4	1259	7.9	4
	26	1259	7.0	4	1266	10.1	4
	27	1263	7.9	4	1277	13.9	4
	28	1267	9.2	4	1290	20.4	4
	29	1274	11.0	4	1290	20.4	4
	30	1283	14.0	4	1290	20.4	4
	31	1290	17.6	4	1290	20.4	4
	32	1290	17.6	4	1290	20.4	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-6. 2016-17 MSAA: Raw to Scaled Score Look-up TableELA Grade 8

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	23.0	1	1200	20.6	1
	1	1200	15.4	1	1200	15.3	1
	2	1200	9.4	1	1200	10.3	1
	3	1206	6.9	1	1202	7.6	1
	4	1210	5.6	1	1207	6.1	1
	5	1213	4.7	1	1211	5.2	
	6	1216	4.2	1	1213	4.6	1
	7	1218	3.8	1	1216	4.1	1
	8	1219	3.5	1	1218	3.8	1
	9	1221	3.3	1	1220	3.6	1
	10	1222	3.1	1	1221	3.5	1
	11	1224	3.0	1	1223	3.4	1
	12	1225	3.0	1	1224	3.3	1
	13	1226	3.0	1	1226	3.3	1
	14	1227	3.0	1	1227	3.3	1
	15	1229	3.0	1	1229	3.4	1
	16	1229	3.1	1	1230	3.4	2
	17	1231	3.1	2	1232	3.5	2
	18	1233	3.2	2	1234	3.7	2
	19	1234	3.4	2	1235	3.9	2
	20	1235	3.5	2	1237	4.1	2
	21	1237	3.7	2	1239	4.4	2
	22	1239	3.9	2	1241	4.7	3
	23	1241	4.2	3	1244	5.1	3
	24	1243	4.5	3	1247	5.6	3

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
A	25	1245	4.9	3	1250	6.2	4
	26	1247	5.4	3	1254	7.1	4
	27	1251	6.1	4	1259	8.2	4
	28	1255	7.1	4	1265	10.0	4
	29	1260	8.8	4	1274	12.9	4
	30	1268	11.7	4	1290	19.7	4
	31	1282	18.8	4	1290	19.7	4
	32	1290	23.9	4	1290	19.7	4
B	0	1200	22.8	1	1200	20.6	1
	1	1200	15.6	1	1200	15.3	1
	2	1200	9.8	1	1200	10.3	1
	3	1206	7.3	1	1202	7.6	1
	4	1210	5.9	1	1207	6.1	1
	5	1213	5.0	1	1211	5.2	1
	6	1216	4.4	1	1213	4.6	1
	7	1218	4.0	1	1216	4.1	1
	8	1220	3.7	1	1218	3.8	1
	9	1222	3.5	1	1220	3.6	1
	10	1223	3.4	1	1221	3.5	1
	11	1225	3.3	1	1223	3.4	1
	12	1226	3.3	1	1224	3.3	1
	13	1228	3.2	1	1226	3.3	1
	14	1229	3.3	1	1227	3.3	1
	15	1230	3.3	2	1229	3.4	1
	16	1232	3.4	2	1230	3.4	2
	17	1233	3.4	2	1232	3.5	2
	18	1234	3.6	2	1234	3.7	2
	19	1236	3.7	2	1235	3.9	2
	20	1238	3.8	2	1237	4.1	2
	21	1239	4.0	2	1239	4.4	2
	22	1241	4.2	3	1241	4.7	3
	23	1243	4.5	3	1244	5.1	3
	24	1245	4.8	3	1247	5.6	3
	25	1248	5.3	3	1250	6.2	4
	26	1251	5.8	4	1254	7.1	4
	27	1254	6.6	4	1259	8.2	4
	28	1258	7.7	4	1265	10.0	4
	29	1264	9.4	4	1274	12.9	4
	30	1272	12.3	4	1290	19.7	4
	31	1286	19.2	4	1290	19.7	4
	32	1290	21.4	4	1290	19.7	4
C	0	1200	23.0	1	1200	20.6	1
	1	1200	16.3	1	1200	15.3	1
	2	1200	10.7	1	1200	10.3	1
	3	1205	8.0	1	1202	7.6	1
	4	1210	6.4	1	1207	6.1	1
	5	1213	5.4	1	1211	5.2	1
	6	1216	4.7	1	1213	4.6	1

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
C	7	1218	4.2	1	1216	4.1	1
	8	1220	3.9	1	1218	3.8	1
	9	1222	3.7	1	1220	3.6	1
	10	1224	3.5	1	1221	3.5	1
	11	1225	3.4	1	1223	3.4	1
	12	1227	3.4	1	1224	3.3	1
	13	1228	3.4	1	1226	3.3	1
	14	1229	3.4	1	1227	3.3	1
	15	1231	3.4	2	1229	3.4	1
	16	1233	3.5	2	1230	3.4	2
	17	1234	3.6	2	1232	3.5	2
	18	1236	3.7	2	1234	3.7	2
	19	1237	3.9	2	1235	3.9	2
	20	1239	4.1	2	1237	4.1	2
	21	1241	4.3	3	1239	4.4	2
	22	1243	4.5	3	1241	4.7	3
	23	1245	4.9	3	1244	5.1	3
	24	1247	5.3	3	1247	5.6	3
	25	1250	5.7	4	1250	6.2	4
	26	1253	6.4	4	1254	7.1	4
	27	1257	7.3	4	1259	8.2	4
	28	1261	8.5	4	1265	10.0	4
	29	1267	10.4	4	1274	12.9	4
	30	1276	13.6	4	1290	19.7	4
	31	1290	19.8	4	1290	19.7	4
	32	1290	19.8	4	1290	19.7	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-7. 2016-17 MSAA: Raw to Scaled Score Look-up TableELA Grade 11

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	32.1	,	1200	27.7	1
	1	1200	20.8	1	1201	13.4	1
	2	1206	11.0	1	1212	6.8	1
	3	1214	6.9	1	1217	4.9	1
	4	1218	5.2	1	1220	3.9	1
	5	1221	4.3	1	1222	3.4	1
	6	1223	3.7	1	1224	3.0	1
	7	1225	3.3	1	1226	2.8	1
	8	1227	3.1	1	1227	2.6	1
	9	1228	2.9	1	1228	2.4	1
	10	1229	2.7	1	1229	2.3	1
	11	1231	2.6	1	1230	2.2	1
	12	1232	2.6	1	1231	2.2	1
	13	1233	2.6	1	1233	2.2	1

Path	Raw Score	2017			2016		
		$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
A	14	1234	2.6	1	1234	2.2	1
	15	1235	2.6	1	1235	2.2	1
	16	1236	2.6	2	1236	2.3	2
	17	1237	2.7	2	1237	2.3	2
	18	1238	2.8	2	1238	2.5	2
	19	1239	2.9	2	1239	2.7	2
	20	1241	3.0	3	1241	2.9	3
	21	1242	3.2	3	1243	3.2	3
	22	1244	3.4	3	1245	3.7	3
	23	1245	3.7	3	1248	4.4	3
	24	1247	4.1	3	1252	5.5	3
	25	1250	4.6	3	1258	7.7	4
	26	1253	5.4	3	1270	14.3	4
	27	1257	6.7	4	1290	29.7	4
	28	1262	8.7	4	1290	29.7	4
	29	1270	12.4	4	1290	29.7	4
	30	1285	20.1	4	1290	29.7	4
	31	1290	22.7	4	1290	29.7	4
	32	1290	22.7	4	1290	29.7	4
B	0	1200	32.1	1	1200	27.7	1
	1	1200	20.6	1	1201	13.4	1
	2	1206	10.8	1	1212	6.8	1
	3	1214	7.0	1	1217	4.9	1
	4	1218	5.4	1	1220	3.9	1
	5	1221	4.5	1	1222	3.4	1
	6	1223	4.0	1	1224	3.0	1
	7	1225	3.6	1	1226	2.8	1
	8	1227	3.4	1	1227	2.6	1
	9	1228	3.2	1	1228	2.4	1
	10	1230	3.1	1	1229	2.3	1
	11	1231	3.0	1	1230	2.2	1
	12	1232	2.9	1	1231	2.2	1
	13	1234	2.8	1	1233	2.2	1
	14	1235	2.8	1	1234	2.2	1
	15	1236	2.8	2	1235	2.2	1
	16	1237	2.9	2	1236	2.3	2
	17	1238	2.9	2	1237	2.3	2
	18	1239	3.0	2	1238	2.5	2
	19	1241	3.1	3	1239	2.7	2
	20	1242	3.2	3	1241	2.9	3
	21	1243	3.4	3	1243	3.2	3
	22	1245	3.6	3	1245	3.7	3
	23	1247	3.9	3	1248	4.4	3
	24	1249	4.3	3	1252	5.5	3
	25	1251	4.9	3	1258	7.7	4
	26	1254	5.7	3	1270	14.3	4
	27	1258	6.8	4	1290	29.7	4
	28	1264	8.7	4	1290	29.7	4

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
B	29	1272	12.2	4	1290	29.7	4
	30	1286	19.5	4	1290	29.7	4
	31	1290	21.7	4	1290	29.7	4
	32	1290	21.7	4	1290	29.7	4
C	0	1200	33.9	1	1200	27.7	1
	1	1200	20.1	1	1201	13.4	1
	2	1208	10.0	1	1212	6.8	1
	3	1215	6.7	1	1217	4.9	1
	4	1219	5.3	1	1220	3.9	1
	5	1222	4.5	1	1222	3.4	1
	6	1224	4.0	1	1224	3.0	1
	7	1226	3.6	1	1226	2.8	1
	8	1228	3.4	1	1227	2.6	1
	9	1230	3.2	1	1228	2.4	1
	10	1231	3.1	1	1229	2.3	1
	11	1232	3.0	1	1230	2.2	1
	12	1234	3.0	1	1231	2.2	1
	13	1235	3.0	1	1233	2.2	1
	14	1236	3.0	2	1234	2.2	1
	15	1237	3.0	2	1235	2.2	1
	16	1239	3.0	2	1236	2.3	2
	17	1239	3.1	2	1237	2.3	2
	18	1241	3.2	3	1238	2.5	2
	19	1243	3.4	3	1239	2.7	2
	20	1244	3.6	3	1241	2.9	3
	21	1246	3.8	3	1243	3.2	3
	22	1248	4.1	3	1245	3.7	3
	23	1250	4.5	3	1248	4.4	3
	24	1252	5.0	3	1252	5.5	3
	25	1255	5.7	4	1258	7.7	4
	26	1259	6.6	4	1270	14.3	4
	27	1263	7.8	4	1290	29.7	4
	28	1269	9.7	4	1290	29.7	4
	29	1278	12.9	4	1290	29.7	4
	30	1290	18.5	4	1290	29.7	4
	31	1290	18.5	4	1290	29.7	4
	32	1290	18.5	4	1290	29.7	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-8. 2016-17 MSAA: Raw to Scaled Score Look-up TableMathematics Grade 3

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	22.9	1	1200	24.3	1
	1	1200	16.7	1	1200	17.0	1
	2	1200	11.5	1	1201	11.3	1
	3	1207	8.9	1	1209	8.7	1
	4	1212	7.5	1	1213	7.3	1
	5	1216	6.6	1	1217	6.4	1
	6	1219	5.9	1	1220	5.7	1
	7	1222	5.5	1	1223	5.3	1
	8	1225	5.1	1	1225	4.9	1
	9	1227	4.8	1	1228	4.6	1
	10	1229	4.6	1	1229	4.4	1
	11	1231	4.4	1	1231	4.2	1
	12	1232	4.3	1	1233	4.1	1
	13	1234	4.1	1	1235	3.9	1
	14	1236	4.0	2	1236	3.8	2
	15	1237	4.0	2	1238	3.7	2
	16	1239	3.9	2	1239	3.7	2
	17	1240	3.9	3	1240	3.7	3
	18	1242	3.9	3	1242	3.7	3
	19	1243	4.0	3	1243	3.7	3
	20	1245	4.1	3	1245	3.7	3
	21	1247	4.2	3	1246	3.8	3
	22	1248	4.4	3	1248	3.9	3
	23	1250	4.6	3	1249	4.1	3
	24	1252	4.8	3	1251	4.3	3
	25	1254	5.1	4	1253	4.6	3
	26	1257	5.4	4	1255	4.9	4
	27	1259	5.8	4	1258	5.3	4
	28	1262	6.3	4	1260	5.8	4
	29	1265	6.9	4	1263	6.5	4
	30	1269	7.7	4	1267	7.3	4
	31	1274	8.8	4	1272	8.5	4
	32	1280	10.4	4	1278	10.4	4
	33	1288	13.1	4	1287	13.7	4
	34	1290	16.2	4	1290	17.8	4
	35	1290	16.2	4	1290	17.8	4
B	0	1200	25.4	1	1200	24.3	1
	1	1200	17.5	1	1200	17.0	1
	2	1203	11.4	1	1201	11.3	1
	3	1210	8.8	1	1209	8.7	1
	4	1215	7.4	1	1213	7.3	1
	5	1219	6.5	1	1217	6.4	1
	6	1222	5.8	1	1220	5.7	1
	7	1225	5.3	1	1223	5.3	1
	8	1227	4.9	1	1225	4.9	1
	9	1229	4.6	1	1228	4.6	1

Path	Raw Score	2017			2016		
		$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
B	10	1231	4.4	1	1229	4.4	1
	11	1233	4.2	1	1231	4.2	1
	12	1235	4.0	1	1233	4.1	1
	13	1237	3.8	2	1235	3.9	1
	14	1238	3.7	2	1236	3.8	2
	15	1239	3.6	2	1238	3.7	2
	16	1241	3.6	3	1239	3.7	2
	17	1242	3.6	3	1240	3.7	3
	18	1244	3.6	3	1242	3.7	3
	19	1245	3.7	3	1243	3.7	3
	20	1247	3.8	3	1245	3.7	3
	21	1248	3.9	3	1246	3.8	3
	22	1250	4.1	3	1248	3.9	3
	23	1252	4.3	3	1249	4.1	3
	24	1253	4.6	3	1251	4.3	3
	25	1256	4.9	4	1253	4.6	3
	26	1258	5.2	4	1255	4.9	4
	27	1260	5.6	4	1258	5.3	4
	28	1263	6.1	4	1260	5.8	4
	29	1266	6.6	4	1263	6.5	4
	30	1270	7.4	4	1267	7.3	4
	31	1274	8.4	4	1272	8.5	4
	32	1280	9.9	4	1278	10.4	4
	33	1288	12.7	4	1287	13.7	4
	34	1290	16.1	4	1290	17.8	4
	35	1290	16.1	4	1290	17.8	4
C	0	1200	25.6	1	1200	24.3	1
	1	1200	17.7	1	1200	17.0	1
	2	1203	11.6	1	1201	11.3	1
	3	1210	9.0	1	1209	8.7	1
	4	1215	7.6	1	1213	7.3	1
	5	1219	6.6	1	1217	6.4	1
	6	1222	5.9	1	1220	5.7	1
	7	1225	5.3	1	1223	5.3	1
	8	1228	4.8	1	1225	4.9	1
	9	1230	4.4	1	1228	4.6	1
	10	1232	4.1	1	1229	4.4	1
	11	1234	3.9	1	1231	4.2	1
	12	1236	3.7	2	1233	4.1	1
	13	1237	3.6	2	1235	3.9	1
	14	1238	3.6	2	1236	3.8	2
	15	1239	3.6	2	1238	3.7	2
	16	1241	3.6	3	1239	3.7	2
	17	1243	3.6	3	1240	3.7	3
	18	1244	3.7	3	1242	3.7	3
	19	1246	3.8	3	1243	3.7	3
	20	1247	3.9	3	1245	3.7	3
	21	1249	4.1	3	1246	3.8	3

Path	Raw Score	2017			2016		
		$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
C	22	1251	4.3	3	1248	3.9	3
	23	1253	4.6	3	1249	4.1	3
	24	1255	4.9	4	1251	4.3	3
	25	1257	5.3	4	1253	4.6	3
	26	1259	5.7	4	1255	4.9	4
	27	1262	6.1	4	1258	5.3	4
	28	1265	6.6	4	1260	5.8	4
	29	1268	7.2	4	1263	6.5	4
	30	1273	8.1	4	1267	7.3	4
	31	1277	9.2	4	1272	8.5	4
	32	1284	11.0	4	1278	10.4	4
	33	1290	14.2	4	1287	13.7	4
	34	1290	15.3	4	1290	17.8	4
	35	1290	15.3	4	1290	17.8	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-9. 2016-17 MSAA: Raw to Scaled Score Look-up TableMathematics Grade 4

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	25.2	1	1200	24.7	1
	1	1200	19.9	1	1200	18.6	1
	2	1200	15.5	1	1200	13.3	1
	3	1200	11.7	1	1202	10.2	1
	4	1205	9.6	1	1208	8.6	1
	5	1210	8.2	1	1213	7.5	1
	6	1214	7.3	1	1217	6.8	1
	7	1218	6.6	1	1220	6.2	1
	8	1221	6.1	1	1223	5.8	1
	9	1224	5.6	1	1225	5.5	1
	10	1226	5.3	1	1228	5.2	1
	11	1228	5.0	1	1230	5.0	1
	12	1230	4.8	1	1232	4.9	1
	13	1232	4.6	1	1234	4.8	2
	14	1234	4.5	2	1236	4.7	2
	15	1236	4.4	2	1238	4.6	2
	16	1238	4.4	2	1239	4.6	2
	17	1239	4.3	2	1241	4.7	3
	18	1241	4.3	3	1243	4.7	3
	19	1243	4.4	3	1245	4.8	3
	20	1244	4.4	3	1247	4.9	3
	21	1246	4.5	3	1249	5.0	3

Path	Raw Score	2017			2016		
		$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
A	22	1248	4.6	3	1251	5.2	4
	23	1250	4.8	3	1254	5.5	4
	24	1252	5.0	4	1256	5.8	4
	25	1254	5.2	4	1259	6.2	4
	26	1257	5.6	4	1262	6.8	4
	27	1259	6.0	4	1266	7.5	4
	28	1262	6.6	4	1270	8.6	4
	29	1266	7.3	4	1276	10.1	4
	30	1270	8.4	4	1283	12.4	4
	31	1276	10.0	4	1290	15.6	4
	32	1283	12.4	4	1290	15.6	4
	33	1290	15.8	4	1290	15.6	4
	34	1290	15.8	4	1290	15.6	4
	35	1290	15.8	4	1290	15.6	4
B	0	1200	27.8	1	1200	24.7	1
	1	1200	19.7	1	1200	18.6	1
	2	1200	13.1	1	1200	13.3	1
	3	1205	10.0	1	1202	10.2	1
	4	1211	8.3	1	1208	8.6	1
	5	1215	7.2	1	1213	7.5	1
	6	1219	6.5	1	1217	6.8	1
	7	1222	5.9	1	1220	6.2	1
	8	1225	5.5	1	1223	5.8	1
	9	1227	5.1	1	1225	5.5	1
	10	1229	4.9	1	1228	5.2	1
	11	1232	4.7	1	1230	5.0	1
	12	1233	4.5	2	1232	4.9	1
	13	1235	4.4	2	1234	4.8	2
	14	1237	4.3	2	1236	4.7	2
	15	1239	4.2	2	1238	4.6	2
	16	1240	4.2	3	1239	4.6	2
	17	1242	4.1	3	1241	4.7	3
	18	1244	4.1	3	1243	4.7	3
	19	1245	4.2	3	1245	4.8	3
	20	1247	4.2	3	1247	4.9	3
	21	1249	4.3	3	1249	5.0	3
	22	1250	4.4	3	1251	5.2	4
	23	1252	4.5	4	1254	5.5	4
	24	1254	4.8	4	1256	5.8	4
	25	1256	5.1	4	1259	6.2	4
	26	1259	5.4	4	1262	6.8	4
	27	1262	5.9	4	1266	7.5	4
	28	1265	6.6	4	1270	8.6	4
	29	1268	7.5	4	1276	10.1	4
	30	1273	8.6	4	1283	12.4	4
	31	1279	10.3	4	1290	15.6	4
	32	1286	12.7	4	1290	15.6	4
	33	1290	14.9	4	1290	15.6	4

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
B	34	1290	14.9	4	1290	15.6	4
	35	1290	14.9	4	1290	15.6	4
C	0	1200	26.1	1	1200	24.7	1
	1	1200	19.5	1	1200	18.6	1
	2	1200	13.8	1	1200	13.3	1
	3	1204	10.7	1	1202	10.2	1
	4	1210	9.0	1	1208	8.6	1
	5	1215	7.9	1	1213	7.5	1
	6	1219	7.2	1	1217	6.8	1
	7	1222	6.6	1	1220	6.2	1
	8	1225	6.2	1	1223	5.8	1
	9	1228	5.9	1	1225	5.5	1
	10	1230	5.6	1	1228	5.2	1
	11	1232	5.4	1	1230	5.0	1
	12	1235	5.2	2	1232	4.9	1
	13	1237	5.0	2	1234	4.8	2
	14	1239	4.9	2	1236	4.7	2
	15	1241	4.8	3	1238	4.6	2
	16	1243	4.7	3	1239	4.6	2
	17	1244	4.7	3	1241	4.7	3
	18	1246	4.6	3	1243	4.7	3
	19	1248	4.7	3	1245	4.8	3
	20	1250	4.7	3	1247	4.9	3
	21	1252	4.9	4	1249	5.0	3
	22	1254	5.1	4	1251	5.2	4
	23	1256	5.3	4	1254	5.5	4
	24	1259	5.7	4	1256	5.8	4
	25	1261	6.1	4	1259	6.2	4
	26	1264	6.7	4	1262	6.8	4
	27	1268	7.4	4	1266	7.5	4
	28	1272	8.2	4	1270	8.6	4
	29	1276	9.1	4	1276	10.1	4
	30	1281	10.3	4	1283	12.4	4
	31	1287	11.8	4	1290	15.6	4
	32	1290	13.1	4	1290	15.6	4
	33	1290	13.1	4	1290	15.6	4
	34	1290	13.1	4	1290	15.6	4
	35	1290	13.1	4	1290	15.6	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-10. 2016-17 MSAA: Raw to Scaled Score Look-up Table-
Mathematics Grade 5

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	27.3	1	1200	26.9	1
	1	1200	19.7	1	1200	20.8	1
	2	1200	13.3	1	1200	15.4	1
	3	1206	9.9	1	1201	11.3	1
	4	1212	8.1	1	1208	9.1	1
	5	1217	6.9	1	1213	7.8	1
	6	1220	6.1	1	1217	6.9	1
	7	1223	5.6	1	1220	6.3	1
	8	1226	5.2	1	1223	5.8	1
	9	1228	4.9	1	1225	5.5	1
	10	1230	4.7	1	1228	5.3	1
	11	1232	4.6	2	1230	5.1	1
	12	1234	4.4	2	1232	5.0	2
	13	1236	4.4	2	1234	4.9	2
	14	1238	4.3	2	1236	4.8	2
	15	1239	4.3	2	1238	4.8	2
	16	1241	4.2	3	1240	4.8	3
	17	1243	4.3	3	1242	4.8	3
	18	1244	4.3	3	1244	4.8	3
	19	1246	4.3	3	1246	4.8	3
	20	1248	4.4	3	1248	4.9	3
	21	1250	4.5	3	1250	5.0	3
	22	1252	4.7	3	1252	5.1	3
	23	1254	4.9	3	1254	5.3	3
	24	1256	5.1	4	1256	5.5	4
	25	1258	5.4	4	1259	5.8	4
	26	1261	5.8	4	1262	6.2	4
	27	1264	6.3	4	1265	6.7	4
	28	1267	7.0	4	1268	7.4	4
	29	1271	7.8	4	1272	8.3	4
	30	1275	8.9	4	1277	9.6	4
	31	1281	10.3	4	1283	11.4	4
	32	1288	12.4	4	1290	14.1	4
	33	1290	14.2	4	1290	14.7	4
	34	1290	14.2	4	1290	14.7	4
	35	1290	14.2	4	1290	14.7	4
B	0	1200	29.3	1	1200	26.9	1
	1	1200	21.1	1	1200	20.8	1
	2	1200	14.2	1	1200	15.4	1
	3	1207	10.6	1	1201	11.3	1
	4	1213	8.5	1	1208	9.1	1
	5	1218	7.3	1	1213	7.8	1
	6	1221	6.4	1	1217	6.9	1
	7	1224	5.8	1	1220	6.3	1
	8	1227	5.4	1	1223	5.8	1
	9	1230	5.1	1	1225	5.5	1

Path	Raw Score	2017			2016		
		$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
B	10	1232	4.9	2	1228	5.3	1
	11	1234	4.7	2	1230	5.1	1
	12	1236	4.6	2	1232	5.0	2
	13	1238	4.5	2	1234	4.9	2
	14	1239	4.4	2	1236	4.8	2
	15	1241	4.4	3	1238	4.8	2
	16	1243	4.4	3	1240	4.8	3
	17	1245	4.4	3	1242	4.8	3
	18	1247	4.5	3	1244	4.8	3
	19	1248	4.5	3	1246	4.8	3
	20	1250	4.6	3	1248	4.9	3
	21	1252	4.8	3	1250	5.0	3
	22	1254	4.9	3	1252	5.1	3
	23	1256	5.2	4	1254	5.3	3
	24	1258	5.4	4	1256	5.5	4
	25	1261	5.8	4	1259	5.8	4
	26	1264	6.2	4	1262	6.2	4
	27	1267	6.8	4	1265	6.7	4
	28	1270	7.4	4	1268	7.4	4
	29	1274	8.3	4	1272	8.3	4
	30	1279	9.5	4	1277	9.6	4
	31	1285	11.1	4	1283	11.4	4
	32	1290	13.4	4	1290	14.1	4
	33	1290	13.6	4	1290	14.7	4
	34	1290	13.6	4	1290	14.7	4
	35	1290	13.6	4	1290	14.7	4
C	0	1200	28.7	1	1200	26.9	1
	1	1200	21.0	1	1200	20.8	1
	2	1200	14.5	1	1200	15.4	1
	3	1206	10.9	1	1201	11.3	1
	4	1212	8.9	1	1208	9.1	1
	5	1217	7.6	1	1213	7.8	1
	6	1221	6.7	1	1217	6.9	1
	7	1224	6.1	1	1220	6.3	1
	8	1227	5.7	1	1223	5.8	1
	9	1229	5.4	1	1225	5.5	
	10	1232	5.2	2	1228	5.3	1
	11	1234	5.0	2	1230	5.1	1
	12	1236	4.9	2	1232	5.0	2
	13	1238	4.8	2	1234	4.9	2
	14	1240	4.8	3	1236	4.8	2
	15	1242	4.7	3	1238	4.8	2
	16	1244	4.7	3	1240	4.8	3
	17	1246	4.7	3	1242	4.8	3
	18	1248	4.7	3	1244	4.8	3
	19	1250	4.8	3	1246	4.8	3
	20	1252	4.9	3	1248	4.9	3
	21	1254	5.0	3	1250	5.0	3

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
C	22	1256	5.2	4	1252	5.1	3
	23	1258	5.4	4	1254	5.3	3
	24	1260	5.7	4	1256	5.5	4
	25	1263	6.1	4	1259	5.8	4
	26	1266	6.6	4	1262	6.2	4
	27	1269	7.2	4	1265	6.7	4
	28	1273	8.0	4	1268	7.4	4
	29	1277	9.1	4	1272	8.3	4
	30	1283	10.4	4	1277	9.6	4
	31	1289	12.1	4	1283	11.4	4
	32	1290	13.4	4	1290	14.1	4
	33	1290	13.4	4	1290	14.7	4
	34	1290	13.4	4	1290	14.7	4
	35	1290	13.4	4	1290	14.7	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-11. 2016-17 MSAA: Raw to Scaled Score Look-up Table-
Mathematics Grade 6

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	21.0	1	1200	23.1	1
	1	1200	14.2	1	1200	17.0	1
	2	1201	9.5	1	1200	11.8	1
	3	1207	7.5	1	1205	9.0	1
	4	1211	6.4	1	1210	7.5	1
	5	1215	5.7	1	1214	6.5	1
	6	1217	5.2	1	1217	5.8	1
	7	1220	4.8	1	1220	5.3	1
	8	1222	4.5	1	1222	4.9	1
	9	1224	4.3	1	1225	4.6	1
	10	1225	4.1	1	1226	4.4	1
	11	1227	4.0	1	1228	4.2	1
	12	1229	3.8	1	1230	4.1	1
	13	1230	3.8	1	1232	4.0	1
	14	1231	3.7	1	1233	4.0	1
	15	1233	3.7	1	1235	3.9	2
	16	1234	3.6	2	1236	3.9	2
	17	1235	3.6	2	1238	3.9	2
	18	1237	3.7	2	1239	4.0	2
	19	1238	3.7	2	1241	4.1	3
	20	1239	3.7	2	1242	4.2	3
	21	1241	3.8	3	1244	4.3	3
	22	1242	3.9	3	1246	4.5	3
	23	1244	4.1	3	1248	4.7	3
	24	1246	4.2	3	1250	4.9	
	25	1247	4.4	3	1252	5.2	4

continued

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	26	1249	4.7	4	1254	5.6	4
	27	1252	5.0	4	1257	6.0	4
	28	1254	5.4	4	1260	6.6	4
	29	1257	5.9	4	1264	7.4	4
	30	1260	6.5	4	1268	8.4	4
	31	1264	7.4	4	1274	9.9	4
	32	1269	8.9	4	1281	12.3	4
	33	1276	11.4	4	1290	16.5	4
	34	1290	17.7	4	1290	16.7	4
	35	1290	19.4	4	1290	16.7	4
B	0	1200	24.0	1	1200	23.1	1
	1	1200	13.2	1	1200	17.0	1
	2	1206	8.7	1	1200	11.8	1
	3	1211	6.9	1	1205	9.0	1
	4	1215	5.9	1	1210	7.5	1
	5	1218	5.3	1	1214	6.5	1
	6	1220	4.8	1	1217	5.8	1
	7	1223	4.5	1	1220	5.3	1
	8	1225	4.2	1	1222	4.9	1
	9	1226	4.0	1	1225	4.6	1
	10	1228	3.8	1	1226	4.4	1
	11	1229	3.7	1	1228	4.2	1
	12	1231	3.6	1	1230	4.1	1
	13	1232	3.6	1	1232	4.0	1
	14	1234	3.5	2	1233	4.0	1
	15	1235	3.5	2	1235	3.9	2
	16	1236	3.5	2	1236	3.9	2
	17	1237	3.5	2	1238	3.9	2
	18	1239	3.5	2	1239	4.0	2
	19	1239	3.5	2	1241	4.1	3
	20	1241	3.6	3	1242	4.2	3
	21	1243	3.7	3	1244	4.3	3
	22	1244	3.8	3	1246	4.5	3
	23	1246	3.9	3	1248	4.7	3
	24	1247	4.0	3	1250	4.9	4
	25	1249	4.2	4	1252	5.2	4
	26	1251	4.5	4	1254	5.6	4
	27	1253	4.8	4	1257	6.0	4
	28	1255	5.1	4	1260	6.6	4
	29	1258	5.6	4	1264	7.4	4
	30	1261	6.2	4	1268	8.4	4
	31	1264	7.1	4	1274	9.9	4
	32	1269	8.5	4	1281	12.3	4
	33	1276	10.9	4	1290	16.5	4
	34	1289	17.1	4	1290	16.7	4
	35	1290	19.1	4	1290	16.7	4
C	0	1200	24.7	1	1200	23.1	1
	1	1200	14.9	1	1200	17.0	1

Path	Raw Score	2017			2016		
		$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
C	2	1204	9.6	1	1200	11.8	1
	3	1210	7.5	1	1205	9.0	1
	4	1214	6.4	1	1210	7.5	1
	5	1217	5.6	1	1214	6.5	1
	6	1220	5.1	1	1217	5.8	1
	7	1222	4.8	1	1220	5.3	1
	8	1224	4.5	1	1222	4.9	1
	9	1226	4.3	1	1225	4.6	1
	10	1228	4.1	1	1226	4.4	1
	11	1230	4.0	1	1228	4.2	1
	12	1231	3.9	1	1230	4.1	1
	13	1233	3.8	1	1232	4.0	1
	14	1234	3.7	2	1233	4.0	1
	15	1236	3.7	2	1235	3.9	2
	16	1237	3.7	2	1236	3.9	2
	17	1238	3.7	2	1238	3.9	2
	18	1239	3.7	2	1239	4.0	2
	19	1241	3.7	3	1241	4.1	3
	20	1243	3.8	3	1242	4.2	3
	21	1244	3.9	3	1244	4.3	3
	22	1246	4.0	3	1246	4.5	3
	23	1247	4.2	3	1248	4.7	3
	24	1249	4.4	4	1250	4.9	4
	25	1251	4.6	4	1252	5.2	4
	26	1253	4.9	4	1254	5.6	4
	27	1255	5.2	4	1257	6.0	4
	28	1258	5.7	4	1260	6.6	4
	29	1261	6.2	4	1264	7.4	4
	30	1264	7.0	4	1268	8.4	4
	31	1268	8.0	4	1274	9.9	4
	32	1274	9.7	4	1281	12.3	4
	33	1283	12.8	4	1290	16.5	4
	34	1290	17.5	4	1290	16.7	4
	35	1290	17.5	4	1290	16.7	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-12. 2016-17 MSAA: Raw to Scaled Score Look-up Table-
Mathematics Grade 7

Path	Raw Score	2017			2016		
		$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
A	0	1200	22.3	1	1200	20.8	1
	1	1200	15.8	1	1200	15.1	1
	2	1202	10.5	1	1201	10.4	1
	3	1209	8.1	1	1208	8.3	1
	4	1215	6.8	1	1212	7.1	1
	5	1219	6.0	1	1216	6.4	1
	6	1222	5.4	1	1219	5.8	1
	7	1224	5.0	1	1222	5.5	1
	8	1227	4.7	1	1224	5.2	1
	9	1229	4.5	1	1226	5.0	1
	10	1231	4.3	1	1228	4.8	1
	11	1233	4.2	2	1230	4.7	1
	12	1235	4.1	2	1232	4.6	2
	13	1236	4.0	2	1234	4.6	2
	14	1238	4.0	2	1236	4.5	2
	15	1239	3.9	2	1237	4.5	2
	16	1241	3.9	3	1239	4.5	2
	17	1243	3.9	3	1241	4.5	3
	18	1245	4.0	3	1243	4.6	3
	19	1247	4.0	3	1244	4.6	3
	20	1248	4.1	3	1246	4.7	3
	21	1250	4.2	3	1248	4.8	3
	22	1252	4.3	3	1250	4.9	3
	23	1254	4.4	4	1252	5.1	3
	24	1256	4.6	4	1254	5.2	4
	25	1259	4.8	4	1256	5.5	4
	26	1261	5.1	4	1258	5.7	4
	27	1264	5.4	4	1261	6.1	4
	28	1268	5.8	4	1264	6.5	4
	29	1272	6.4	4	1267	7.1	4
	30	1277	7.1	4	1271	8.0	4
	31	1284	8.1	4	1277	9.3	4
	32	1290	9.6	4	1284	11.5	4
	33	1290	12.4	4	1290	16.2	4
	34	1290	17.6	4	1290	16.2	4
B	0	1200	17.6	1	1200	20.8	1
	1	1200	24.5	1	1200	15.1	1
	2	1202	16.9	1	1201	10.4	1
	3	1210	11.0	1	1208	8.3	1
	4	1214	8.4	1	1212	7.1	1
	5	1218	7.1	1	1216	6.4	1
	6	1221	6.2	1	1219	5.8	1
	7	1224	5.6	1	1222	5.5	1
	8	1226	5.2	1	1224	5.2	1
	9	1228	4.8	1	1226	5.0	1
	10	1230	4.6	1	1228	4.8	1

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
B	11	1232	4.3	2	1230	4.7	1
	12	1233	4.2	2	1232	4.6	2
	13	1235	4.1	2	1234	4.6	2
	14	1236	4.0	2	1236	4.5	2
	15	1238	4.0	2	1237	4.5	2
	16	1239	4.0	2	1239	4.5	2
	17	1241	4.0	3	1241	4.5	3
	18	1243	4.1	3	1243	4.6	3
	19	1244	4.1	3	1244	4.6	3
	20	1246	4.2	3	1246	4.7	3
	21	1247	4.3	3	1248	4.8	3
	22	1249	4.4	3	1250	4.9	3
	23	1251	4.6	3	1252	5.1	3
	24	1253	4.8	3	1254	5.2	4
	25	1255	5.0	4	1256	5.5	4
	26	1257	5.3	4	1258	5.7	4
	27	1259	5.6	4	1261	6.1	4
	28	1262	6.1	4	1264	6.5	4
	29	1265	6.6	4	1267	7.1	4
	30	1269	7.4	4	1271	8.0	4
	31	1273	8.5	4	1277	9.3	4
	32	1279	10.2	4	1284	11.5	4
	33	1288	13.3	4	1290	16.2	4
	34	1290	16.4	4	1290	16.2	4
	35	1290	16.4	4	1230	4.7	1
C	0	1200	25.4	1	1200	20.8	1
	1	1200	17.8	1	1200	15.1	1
	2	1202	11.7	1	1201	10.4	1
	3	1209	8.9	1	1208	8.3	1
	4	1215	7.4	1	1212	7.1	1
	5	1219	6.5	1	1216	6.4	1
	6	1222	5.8	1	1219	5.8	1
	7	1224	5.4	1	1222	5.5	1
	8	1227	5.1	1	1224	5.2	1
	9	1229	4.8	1	1226	5.0	1
	10	1231	4.6	1	1228	4.8	1
	11	1233	4.5	2	1230	4.7	1
	12	1235	4.4	2	1232	4.6	2
	13	1236	4.3	2	1234	4.6	2
	14	1238	4.3	2	1236	4.5	2
	15	1239	4.3	2	1237	4.5	2
	16	1241	4.3	3	1239	4.5	2
	17	1243	4.3	3	1241	4.5	3
	18	1245	4.4	3	1243	4.6	3
	19	1247	4.5	3	1244	4.6	3
	20	1248	4.6	3	1246	4.7	3
	21	1250	4.7	3	1248	4.8	3
	22	1252	4.9	3	1250	4.9	3

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
C	23	1254	5.1	4	1252	5.1	3
	24	1256	5.3	4	1254	5.2	4
	25	1259	5.7	4	1256	5.5	4
	26	1261	6.1	4	1258	5.7	4
	27	1264	6.6	4	1261	6.1	4
	28	1268	7.3	4	1264	6.5	4
	29	1272	8.3	4	1267	7.1	4
	30	1277	9.7	4	1271	8.0	4
	31	1284	11.9	4	1277	9.3	4
	32	1290	15.7	4	1284	11.5	4
	33	1290	15.7	4	1290	16.2	4
	34	1290	15.7	4	1290	16.2	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score look-up for 2016 is repeated three times in the table.

Table L-13. 2016-17 MSAA: Raw to Scaled Score Look-up TableMathematics Grade 8

Path	Raw Score	2017			2016		
		$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	$\begin{aligned} & \text { Performance } \\ & \text { Level } \end{aligned}$
A	0	1200	24.1	1	1200	24.1	1
	1	1200	16.9	1	1200	16.9	1
	2	1200	11.2	1	1200	11.2	
	3	1207	8.6	1	1207	8.6	1
	4	1212	7.1	1	1212	7.1	1
	5	1216	6.2	1	1216	6.2	1
	6	1219	5.5	1	1219	5.5	1
	7	1222	5.1	1	1222	5.1	1
	8	1224	4.7	1	1224	4.7	1
	9	1226	4.5	1	1226	4.5	1
	10	1228	4.3	1	1228	4.3	1
	11	1229	4.2	1	1229	4.2	1
	12	1231	4.1	1	1231	4.1	1
	13	1233	4.0	1	1233	4.0	1
	14	1234	4.0	2	1234	4.0	2
	15	1236	4.0	2	1236	4.0	2
	16	1237	4.0	2	1237	4.0	2
	17	1239	4.0	2	1239	4.0	2
	18	1240	4.0	3	1240	4.0	3
	19	1242	4.0	3	1242	4.0	3
	20	1243	4.1	3	1243	4.1	3
	21	1245	4.2	3	1245	4.2	3
	22	1246	4.3	3	1246	4.3	3
	23	1248	4.4	3	1248	4.4	3
	24	1250	4.5	4	1250	4.5	4
	25	1252	4.7	4	1252	4.7	4
	26	1254	4.9	4	1254	4.9	4
	27	1256	5.2	4	1256	5.2	4
	28	1258	5.6	4	1258	5.6	4
	29	1261	6.1	4	1261	6.1	4

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	30	1264	6.7	4	1264	6.7	4
	31	1268	7.6	4	1268	7.6	4
	32	1274	9.1	4	1274	9.1	4
	33	1281	11.7	4	1281	9.0	4
	34	1290	18.1	4	1290	0.0	4
	35	1290	18.1	4	1290	0.0	4
B	0	1200	26.4	1	1200	24.1	1
	1	1200	15.9	1	1200	16.9	1
	2	1204	10.1	1	1200	11.2	1
	3	1211	7.9	1	1207	8.6	1
	4	1215	6.7	1	1212	7.1	1
	5	1219	6.0	1	1216	6.2	1
	6	1221	5.4	1	1219	5.5	1
	7	1224	5.1	1	1222	5.1	1
	8	1226	4.8	1	1224	4.7	1
	9	1228	4.6	1	1226	4.5	1
	10	1230	4.4	1	1228	4.3	1
	11	1232	4.3	1	1229	4.2	1
	12	1233	4.2	1	1231	4.1	1
	13	1235	4.1	2	1233	4.0	1
	14	1236	4.0	2	1234	4.0	2
	15	1238	4.0	2	1236	4.0	2
	16	1239	4.0	2	1237	4.0	2
	17	1241	4.0	3	1239	4.0	2
	18	1242	4.0	3	1240	4.0	3
	19	1244	4.0	3	1242	4.0	3
	20	1245	4.1	3	1243	4.1	3
	21	1247	4.2	3	1245	4.2	3
	22	1249	4.2	4	1246	4.3	3
	23	1250	4.4	4	1248	4.4	3
	24	1252	4.5	4	1250	4.5	4
	25	1253	4.7	4	1252	4.7	4
	26	1255	4.9	4	1254	4.9	4
	27	1258	5.2	4	1256	5.2	4
	28	1260	5.5	4	1258	5.6	4
	29	1263	6.0	4	1261	6.1	4
	30	1266	6.6	4	1264	6.7	4
	31	1270	7.5	4	1268	7.6	4
	32	1275	8.9	4	1274	9.1	4
	33	1282	11.4	4	1281	9.0	4
	34	1290	17.3	4	1290	0.0	4
	35	1290	17.3	4	1290	0.0	4
C	0	1200	27.0	1	1200	24.1	1
	1	1200	17.8	1	1200	16.9	1
	2	1202	11.2	1	1200	11.2	1
	3	1209	8.6	1	1207	8.6	1
	4	1214	7.2	1	1212	7.1	1
	5	1218	6.3	1	1216	6.2	1

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
C	6	1221	5.7	1	1219	5.5	1
	7	1223	5.3	1	1222	5.1	1
	8	1226	5.0	1	1224	4.7	1
	9	1228	4.8	1	1226	4.5	1
	10	1230	4.6	1	1228	4.3	1
	11	1232	4.4	1	1229	4.2	1
	12	1233	4.3	1	1231	4.1	1
	13	1235	4.2	2	1233	4.0	1
	14	1237	4.2	2	1234	4.0	2
	15	1238	4.2	2	1236	4.0	2
	16	1239	4.1	2	1237	4.0	2
	17	1241	4.2	3	1239	4.0	2
	18	1243	4.2	3	1240	4.0	3
	19	1244	4.2	3	1242	4.0	3
	20	1246	4.3	3	1243	4.1	3
	21	1248	4.4	3	1245	4.2	3
	22	1249	4.5	4	1246	4.3	3
	23	1251	4.6	4	1248	4.4	3
	24	1253	4.8	4	1250	4.5	4
	25	1255	5.0	4	1252	4.7	4
	26	1257	5.3	4	1254	4.9	4
	27	1260	5.7	4	1256	5.2	4
	28	1262	6.1	4	1258	5.6	4
	29	1266	6.7	4	1261	6.1	4
	30	1269	7.6	4	1264	6.7	4
	31	1274	8.8	4	1268	7.6	4
	32	1281	10.8	4	1274	9.1	4
	33	1290	14.5	4	1281	9.0	4
	34	1290	16.4	4	1290	0.0	4
	35	1290	16.4	4	1290	0.0	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

Table L-14. 2016-17 MSAA: Raw to Scaled Score Look-up TableMathematics Grade 11

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
A	0	1200	25.2	1	1200	24.0	1
	1	1200	13.6	1	1200	16.5	1
	2	1207	9.0	1	1202	11.1	1
	3	1213	7.1	1	1209	8.9	1
	4	1217	6.1	1	1214	7.6	1
	5	1220	5.4	1	1218	6.8	1
	6	1222	5.0	1	1221	6.2	1
	7	1225	4.6	1	1224	5.7	1
	8	1227	4.4	1	1227	5.3	1
	9	1228	4.2	1	1229	5.1	1
	10	1230	4.0	1	1231	4.8	1

Path		2017			2016		
	$\begin{aligned} & \text { Raw } \\ & \text { Score } \end{aligned}$	Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
	11	1232	3.9	1	1233	4.7	1
	12	1233	3.8	1	1235	4.5	2
	13	1235	3.8	2	1237	4.4	2
	14	1236	3.8	2	1238	4.3	2
	15	1237	3.7	2	1239	4.3	2
	16	1239	3.7	2	1242	4.2	3
	17	1240	3.7	3	1243	4.2	3
	18	1242	3.8	3	1245	4.2	3
	19	1243	3.8	3	1246	4.3	3
	20	1244	3.8	3	1248	4.3	3
	21	1246	3.9	3	1250	4.4	4
	22	1247	4.0	3	1251	4.5	4
	23	1249	4.1	4	1253	4.7	4
	24	1251	4.3	4	1255	4.9	4
	25	1252	4.4	4	1257	5.1	4
	26	1254	4.6	4	1260	5.4	4
	27	1256	4.9	4	1262	5.8	4
	28	1259	5.2	4	1265	6.4	4
	29	1261	5.6	4	1269	7.1	4
	30	1264	6.2	4	1273	8.2	4
	31	1268	7.0	4	1279	9.9	4
	32	1272	8.2	4	1288	13.1	4
	33	1279	10.3	4	1290	16.3	4
	34	1290	15.6	4	1290	16.3	4
	35	1290	17.9	4	1290	16.3	4
	0	1200	28.9	1	1200	24.0	1
	1	1200	14.6	1	1200	16.5	1
	2	1208	9.4	1	1202	11.1	1
	3	1214	7.3	1	1209	8.9	1
	4	1218	6.2	1	1214	7.6	1
	5	1222	5.6	1	1218	6.8	1
	6	1224	5.1	1	1221	6.2	1
	7	1226	4.7	1	1224	5.7	1
	8	1228	4.5	1	1227	5.3	1
	9	1230	4.3	1	1229	5.1	1
	10	1232	4.1	1	1231	4.8	1
B	11	1234	4.0	2	1233	4.7	1
	12	1235	3.9	2	1235	4.5	2
	13	1237	3.9	2	1237	4.4	2
	14	1238	3.8	2	1238	4.3	2
	15	1239	3.8	2	1239	4.3	2
	16	1241	3.8	3	1242	4.2	3
	17	1242	3.8	3	1243	4.2	3
	18	1244	3.8	3	1245	4.2	3
	19	1245	3.9	3	1246	4.3	3
	20	1247	4.0	3	1248	4.3	3
	21	1248	4.0	3	1250	4.4	4
	22	1250	4.1	4	1251	4.5	4

Path		2017			2016		
	Score	$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level	$\begin{aligned} & \hline \text { Scaled } \\ & \text { Score } \end{aligned}$	Standard Error	Performance Level
	23	1251	4.3	4	1253	4.7	4
	24	1253	4.4	4	1255	4.9	4
	25	1255	4.6	4	1257	5.1	4
	26	1257	4.8	4	1260	5.4	4
	27	1259	5.1	4	1262	5.8	4
	28	1261	5.4	4	1265	6.4	4
	29	1264	5.9	4	1269	7.1	4
	30	1267	6.5	4	1273	8.2	4
	31	1271	7.4	4	1279	9.9	4
	32	1276	8.7	4	1288	13.1	4
	33	1283	11.2	4	1290	16.3	4
	34	1290	16.5	4	1290	16.3	4
	35	1290	16.5	4	1290	16.3	4
	0	1200	29.3	1	1200	24.0	1
	1	1200	14.9	1	1200	16.5	1
	2	1208	9.5	1	1202	11.1	1
	3	1214	7.5	1	1209	8.9	1
	4	1219	6.4	1	1214	7.6	1
	5	1222	5.7	1	1218	6.8	1
	6	1225	5.2	1	1221	6.2	1
	7	1227	4.9	1	1224	5.7	1
	8	1229	4.6	1	1227	5.3	1
	9	1231	4.4	1	1229	5.1	1
	10	1233	4.3	1	1231	4.8	1
	11	1234	4.2	2	1233	4.7	1
	12	1236	4.1	2	1235	4.5	2
	13	1237	4.0	2	1237	4.4	2
	14	1239	4.0	2	1238	4.3	2
	15	1240	3.9	3	1239	4.3	2
C	16	1242	3.9	3	1242	4.2	3
	17	1243	3.9	3	1243	4.2	3
	18	1245	4.0	3	1245	4.2	3
	19	1246	4.0	3	1246	4.3	3
	20	1248	4.1	3	1248	4.3	3
	21	1249	4.2	4	1250	4.4	4
	22	1251	4.3	4	1251	4.5	4
	23	1253	4.4	4	1253	4.7	4
	24	1254	4.6	4	1255	4.9	4
	25	1256	4.8	4	1257	5.1	4
	26	1258	5.1	4	1260	5.4	4
	27	1261	5.4	4	1262	5.8	4
	28	1263	5.8	4	1265	6.4	4
	29	1266	6.4	4	1269	7.1	4
	30	1270	7.1	4	1273	8.2	4
	31	1274	8.1	4	1279	9.9	4
	32	1280	9.7	4	1288	13.1	4
	33	1288	12.5	4	1290	16.3	4

Path	Raw Score	2017			2016		
		Scaled Score	Standard Error	Performance Level	Scaled Score	Standard Error	Performance Level
	34	1290	15.5	4	1290	16.3	4
	35	1290	15.5	4	1290	16.3	4

Note: Because MSAA had one operational form for each test in 2016, the raw to scaled score lookup for 2016 is repeated three times in the table.

APPENDIX M—SCORE DISTRIBUTIONS

Figure M-1.2016-17 MSAA: Performance Level Distributions Graph—ELA

Figure M-2. . 2016-17 MSAA: Performance Level Distributions Graph-

Figure M-3.2016-17 MSAA: Cumulative Score Distribution-

Top: ELA Grade 3 Bottom: ELA Grade 4

Cumulative Scale Score Distributions:

Cumulative Scale Score Distributions:

Figure M-4.2016-17 MSAA: Cumulative Score Distribution
Top: ELA Grade 5 Bottom: ELA Grade 6

Cumulative Scale Score Distributions:

Cumulative Scale Score Distributions:

Figure M-5. 2016-17 MSAA: Cumulative Score Distribution

Top: ELA Grade 7
 Bottom: ELA Grade 8

Cumulative Scale Score Distributions:

Cumulative Scale Score Distributions:

Figure M-6.2016-17 MSAA: Cumulative Score Distribution
ELA Grade 11

Cumulative Scale Score Distributions:

Figure M-7. 2016-17 MSAA: Cumulative Score Distribution Top: Mathematics Grade 3 Bottom: Mathematics Grade 4

Cumulative Scale Score Distributions:

Figure M-8. 2016-17 MSAA: Cumulative Score Distribution Top: Mathematics Grade 5 Bottom: Mathematics Grade 6

Cumulative Scale Score Distributions:

Cumulative Scale Score Distributions:

Figure M-9. 2016-17 MSAA: Cumulative Score Distribution Top: Mathematics Grade 7 Bottom: Mathematics Grade 8

Cumulative Scale Score Distributions:

Cumulative Scale Score Distributions:

Cumulative Scale Score Distributions:

APPENDIX N—TECHNICAL BRIEF: CLASSICAL RELIABILITIES

MSAA 16-17 Technical Brief: Classical Reliabilities

Prepared by Measured Progress June 21, 2018

The focus of this (very) short brief is to provide additional details on the calculations of Cronbach alpha, the results of which were reported in the MSAA School Year (SY) 16-17 Technical Report. In that report, Tables 10-1 and 10-2 contained classical reliabilities (i.e., Cronbach's alpha), disaggregated by subject area (i.e., ELA and mathematics), grade (i.e., 3 to 8 and 11), and path (i.e., A, B, and C). Of special interest is Cronbach alpha for grade 11 mathematics, Path B, which was reported as -0.08 .

In classical test theory, true score reliability ranges from a theoretical minimum of 0 to a maximum of 1 . Cronbach alpha serves as an estimate of internal consistency reliability. The formula for Cronbach alpha (α) is as follows:

$$
\alpha=\frac{n}{n-1}\left[1-\frac{\sum_{j=1}^{n} \sigma_{U j}^{2}}{\sigma_{x}^{2}}\right]
$$

where n is the total number of items,
$\sigma_{U_{j}}^{2}$ is the variance of the $j^{\text {th }}$ item, and
σ_{x}^{2} is the variance of total raw scores.
While Cronbach alpha should not be less than 0.0 theoretically, it is possible to obtain a negative value of Cronbach alpha empirically. This can occur when there is a reduction or restriction in the variation of total raw score, without any restriction in the sum of the item variances. Such a restriction in total raw score variance exists within each path in a multistage adaptive test, because students are routed differentially based on their ability estimates.

A histogram of mathematics grade 11 total raw scores, disaggregated by path, is shown in Figure 1. The histogram shows that each of the three paths reflects only a portion of the overall range and variation in total raw scores.

In terms of the observed statistics for mathematics grade 11, the total raw score variances by path were $14.870,7.501$, and 31.012 , respectively for Paths A, B, and C. Path B had roughly half the variance in total raw scores as seen in Path A and roughly a quarter of the variance in total raw scores as seen in Path C. The sums of the item variances by path were 7.17, 8.10, and 7.34 for Paths A, B, and C, respectively. Unlike the total raw score variances, Path B had the largest sum of item variances among the three paths. Plugging the values into the formula for Cronbach alpha for mathematics grade 11, Path B, we get the following:

$$
\alpha=\left(\frac{35}{35-1}\right)\left(1-\frac{8.10}{7.501}\right)=1.029412(1-1.079856)=1.029412(-0.079856)=-0.08
$$

In this sense, the negative value of Cronbach alpha can be attributed to a reduction in total raw score variance, but not in the sum of the item variances, that arises naturally from multistage testing.

Figure 1. Histogram of Mathematics Grade 11 Total Raw Scores, as a Function of Path

This page intentionally [eft「oโank

It's all about student learning.
M easuredprogress.org

APPENDIX O—CLASSICAL RELIABILITY

Table O-1. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 3 Path A

Description	Number	Raw Score			Alpha	Standard Error
	of Students	Maximum	Mean	Standard Deviation		
All Students	1,160	32	12.75	3.99	0.57	2.61
Female	249	32	12.98	3.98	0.56	2.62
Male	419	32	12.88	4.03	0.58	2.60
Gender Undefined	492	32	12.52	3.96	0.57	2.61
Hispanic or Latino	219	32	12.31	3.90	0.55	2.62
American Indian or Alaska Native	18	32				
Asian	19	32				
Black or African American	153	32	12.86	3.96	0.56	2.62
Native Hawaiian or Pacific Islander	8	32				
White (non-Hispanic)	346	32	13.17	3.83	0.54	2.61
Two or More Races (non-Hispanic)	20	32				
No Primary race/Ethnicity Undefined	377	32	12.70	4.00	0.58	2.61
Currently receiving LEP services	37	32	11.76	3.71	0.51	2.60
Not receiving LEP services	500	32	12.98	3.86	0.54	2.62
LEP: All Other Students	623	32	12.62	4.10	0.60	2.60
Economically Disadvantaged Students	237	32	12.96	3.84	0.53	2.62
Non-economically Disadvantaged Students	300	32	12.84	3.88	0.54	2.62
SES: All Other Students	623	32	12.62	4.10	0.60	2.60
Migrant	0	32				
Non-migrant	529	32	12.90	3.86	0.54	2.62
Undefined Migrant Status	631	32	12.62	4.09	0.60	2.60
Augmentative Communication	318	32	12.20	4.33	0.64	2.60
No Augmentative Communication	839	32	12.95	3.83	0.53	2.61
Undefined Augmentative Communications	3	32				
Hearing Loss	54	32	11.22	4.11	0.61	2.56
Within Normal Limits	1,102	32	12.83	3.97	0.57	2.61
Undefined Hearing Loss	4	32				
Visual Impairment	66	32	11.21	4.37	0.65	2.58
Within Normal Limits	1,087	32	12.85	3.94	0.56	2.61
Undefined Visual Impairment	7	32				
Sensory Stimuli Response	210	32	10.55	4.63	0.71	2.51
						continued

Description	$\begin{gathered} \hline \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Students } \end{array} \end{gathered}$	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Follow Directions	949	32	13.23	3.66	0.48	2.63
Undefined Receptive Language	1	32				
Special School	141	32	12.05	4.51	0.67	2.60
Regular School Self-contained	836	32	12.82	3.88	0.54	2.62
Regular School Resource Room	122	32	12.75	4.14	0.61	2.58
Regular School Primarily Self-contained	37	32	13.19	3.99	0.58	2.59
Regular School General Education	23	32				
Undefined Classroom Setting	1	32				
Student Communicates Primarily Through Cries	147	32	10.04	4.57	0.70	2.50
Uses Intentional Communication	437	32	12.62	3.75	0.51	2.63
Uses Symbolic Language	575	32	13.53	3.69	0.50	2.61
Undefined Expressive Communication	1	32				

Table 0-2. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 3 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	983	32	18.25	3.12	0.30	2.61
Female	209	32	18.37	3.09	0.30	2.60
Male	422	32	18.46	3.07	0.28	2.61
Gender Undefined	352	32	17.92	3.17	0.31	2.63
Hispanic or Latino	168	32	18.12	3.30	0.39	2.59
American Indian or Alaska Native	12	32				
Asian	12	32				
Black or African American	122	32	17.93	2.90	0.17	2.63
Native Hawaiian or Pacific Islander	9	32				
White (non-Hispanic)	330	32	18.70	3.06	0.28	2.59
Two or More Races (non-Hispanic)	44	32	18.34	3.32	0.40	2.56
No Primary race/Ethnicity Undefined	286	32	17.93	3.13	0.29	2.64
Currently receiving LEP services	31	32	18.45	2.96	0.24	2.58
Not receiving LEP services	453	32	18.43	3.07	0.29	2.60
LEP: All Other Students	499	32	18.07	3.16	0.31	2.63

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Economically Disadvantaged Students	242	32	18.48	3.01	0.26	2.59
Non-economically Disadvantaged Students	242	32	18.39	3.12	0.31	2.60
SES: All Other Students	499	32	18.07	3.16	0.31	2.63
Migrant	1	32				
Non-migrant	472	32	18.44	3.07	0.29	2.59
Undefined Migrant Status	510	32	18.07	3.16	0.30	2.63
Augmentative Communication	173	32	17.23	3.06	0.23	2.69
No Augmentative Communication	802	32	18.46	3.09	0.30	2.59
Undefined Augmentative Communications	8	32				
Hearing Loss	25	32	17.16	3.74	0.48	2.69
Within Normal Limits	953	32	18.29	3.09	0.28	2.61
Undefined Hearing Loss	5	32				
Visual Impairment	29	32	17.62	3.29	0.35	2.64
Within Normal Limits	948	32	18.27	3.11	0.29	2.61
Undefined Visual Impairment	6	32				
Sensory Stimuli Response	59	32	17.47	3.22	0.30	2.71
Follow Directions	923	32	18.30	3.11	0.30	2.61
Undefined Receptive Language	1	32				
Special School	65	32	17.92	2.91	0.14	2.69
Regular School Self-contained	659	32	18.14	3.11	0.29	2.62
Regular School Resource Room	160	32	18.39	3.04	0.28	2.58
Regular School Primarily Self-contained	71	32	18.92	3.05	0.29	2.58
Regular School General Education	27	32	18.89	4.12	0.63	2.50
Undefined Classroom Setting	1	32				
Student Communicates Primarily Through Cries	32	32	16.13	2.09	-0.73	2.75
Uses Intentional Communication	223	32	17.74	3.14	0.27	2.68
Uses Symbolic Language	727	32	18.50	3.10	0.31	2.58
Undefined Expressive Communication	1	32				

Table 0-3. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 3 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,303	32	25.43	3.66	0.68	2.07
Female	324	32	25.61	3.53	0.66	2.05
Male	632	32	25.80	3.62	0.69	2.02
Gender Undefined	347	32	24.61	3.75	0.67	2.16
Hispanic or Latino	216	32	24.70	3.48	0.62	2.14
American Indian or Alaska Native	21	32				
Asian	12	32				
Black or African American	188	32	25.54	3.28	0.60	2.07
Native Hawaiian or Pacific Islander	6	32				
White (non-Hispanic)	579	32	26.02	3.55	0.68	2.00
Two or More Races (non-Hispanic)	37	32	26.08	4.15	0.78	1.95
No Primary race/Ethnicity Undefined	244	32	24.61	4.04	0.72	2.15
Currently receiving LEP services	44	32	24.82	3.10	0.53	2.12
Not receiving LEP services	741	32	25.92	3.52	0.67	2.01
LEP: All Other Students	518	32	24.80	3.80	0.68	2.14
Economically Disadvantaged Students	438	32	26.22	3.52	0.69	1.97
Non-economically Disadvantaged Students	347	32	25.39	3.45	0.63	2.09
SES: All Other Students	518	32	24.80	3.80	0.68	2.14
Migrant	0	32				
Non-migrant	780	32	25.87	3.50	0.67	2.02
Undefined Migrant Status	523	32	24.78	3.80	0.68	2.14
Augmentative Communication	89	32	23.63	3.96	0.67	2.26
No Augmentative Communication	1,207	32	25.58	3.59	0.67	2.05
Undefined Augmentative Communications	7	32				
Hearing Loss	16	32				
Within Normal Limits	1,285	32	25.43	3.66	0.68	2.07
Undefined Hearing Loss	2	32				
Visual Impairment	26	32	24.27	4.14	0.73	2.15
Within Normal Limits	1,268	32	25.45	3.65	0.68	2.07
Undefined Visual Impairment	9	32				
Sensory Stimuli Response	23	32				
Follow Directions	1,279	32	25.49	3.63	0.68	2.06
Undefined Receptive Language	1	32				

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Special School	42	32	24.14	4.69	0.78	2.18
Regular School Self-contained	784	32	25.19	3.61	0.66	2.10
Regular School Resource Room	252	32	25.92	3.56	0.68	2.00
Regular School Primarily Self-contained	168	32	26.08	3.55	0.69	1.98
Regular School General Education	56	32	25.63	3.87	0.72	2.06
Undefined Classroom Setting	1	32				
Student Communicates Primarily Through Cries	13	32				
Uses Intentional Communication	149	32	24.05	4.02	0.69	2.25
Uses Symbolic Language	1,140	32	25.65	3.56	0.67	2.04
Undefined Expressive Communication	1	32				

Table 0-4. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 4 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,671	32	14.36	4.08	0.57	2.67
Female	331	32	14.10	4.18	0.59	2.66
Male	625	32	14.78	4.24	0.61	2.66
Gender Undefined	715	32	14.12	3.85	0.52	2.67
Hispanic or Latino	299	32	14.27	4.03	0.56	2.67
American Indian or Alaska Native	20	32				
Asian	18	32				
Black or African American	222	32	14.51	4.27	0.61	2.66
Native Hawaiian or Pacific Islander	13	32				
White (non-Hispanic)	526	32	14.49	4.28	0.62	2.65
Two or More Races (non-Hispanic)	36	32	14.31	4.27	0.61	2.67
No Primary race/Ethnicity Undefined	537	32	14.14	3.84	0.51	2.68
Currently receiving LEP services	55	32	15.22	4.10	0.57	2.69
Not receiving LEP services	721	32	14.52	4.20	0.60	2.66
LEP: All Other Students	895	32	14.18	3.97	0.55	2.67
Economically Disadvantaged Students	336	32	14.58	4.43	0.64	2.65
Non-economically Disadvantaged Students	440	32	14.56	4.01	0.56	2.66

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	895	32	14.18	3.97	0.55	2.67
Migrant	1	32				
Non-migrant	762	32	14.56	4.18	0.59	2.66
Undefined Migrant Status	908	32	14.19	3.98	0.55	2.67
Augmentative Communication	432	32	13.77	3.87	0.52	2.68
No Augmentative Communication	1,221	32	14.60	4.13	0.59	2.66
Undefined Augmentative Communications	18	32				
Hearing Loss	57	32	13.42	5.18	0.75	2.61
Within Normal Limits	1,610	32	14.39	4.03	0.56	2.67
Undefined Hearing Loss	4	32				
Visual Impairment	96	32	13.19	5.05	0.73	2.62
Within Normal Limits	1,563	32	14.44	4.00	0.56	2.67
Undefined Visual Impairment	12	32				
Sensory Stimuli Response	211	32	12.00	4.76	0.70	2.61
Follow Directions	1,458	32	14.71	3.85	0.52	2.67
Undefined Receptive Language	2	32				
Special School	215	32	13.43	4.49	0.65	2.65
Regular School Self-contained	1,173	32	14.26	3.93	0.54	2.67
Regular School Resource Room	172	32	15.42	4.22	0.61	2.64
Regular School Primarily Self-contained	61	32	15.34	3.78	0.50	2.67
Regular School General Education	48	32	16.04	4.05	0.58	2.63
Undefined Classroom Setting	2	32				
Student Communicates Primarily Through						
Cries	160	32	11.70	5.09	0.74	2.58
Uses Intentional Communication	563	32	14.01	3.86	0.52	2.68
Uses Symbolic Language	946	32	15.03	3.79	0.50	2.67
Undefined Expressive Communication	2	32				

Table 0-5. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 4 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	647	32	19.97	2.96	0.25	2.57
Female	126	32	19.66	2.98	0.27	2.56
Male	265	32	20.17	2.99	0.27	2.56
Gender Undefined	256	32	19.92	2.91	0.21	2.60
Hispanic or Latino	120	32	19.89	2.80	0.16	2.57
American Indian or Alaska Native	7	32				
Asian	12	32				
Black or African American	116	32	20.26	2.82	0.18	2.55
Native Hawaiian or Pacific Islander	5	32				
White (non-Hispanic)	189	32	20.07	3.06	0.31	2.53
Two or More Races (non-Hispanic)	11	32				
No Primary race/Ethnicity Undefined	187	32	19.71	3.00	0.24	2.61
Currently receiving LEP services	18	32				
Not receiving LEP services	300	32	20.10	2.99	0.27	2.55
LEP: All Other Students	329	32	19.88	2.93	0.22	2.59
Economically Disadvantaged Students	167	32	20.35	2.97	0.27	2.54
Non-economically Disadvantaged Students	151	32	19.76	3.00	0.27	2.57
SES: All Other Students	329	32	19.88	2.93	0.22	2.59
Migrant	0	32				
Non-migrant	312	32	20.07	2.98	0.27	2.55
Undefined Migrant Status	335	32	19.88	2.94	0.23	2.59
Augmentative Communication	83	32	19.43	2.67	0.00	2.66
No Augmentative Communication	559	32	20.05	3.00	0.28	2.55
Undefined Augmentative Communications	5	32				
Hearing Loss	14	32				
Within Normal Limits	626	32	20.01	2.96	0.25	2.57
Undefined Hearing Loss	7	32				
Visual Impairment	21	32				
Within Normal Limits	621	32	19.99	2.98	0.26	2.57
Undefined Visual Impairment	5	32				
Sensory Stimuli Response	23	32				
Follow Directions	622	32	19.99	2.96	0.25	2.57

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	2	32				
Special School	39	32	19.59	2.64	0.01	2.62
Regular School Self-contained	414	32	19.87	2.91	0.21	2.58
Regular School Resource Room	108	32	20.24	3.28	0.41	2.52
Regular School Primarily Self-contained	64	32	20.56	3.01	0.29	2.54
Regular School General Education	20	32				
Undefined Classroom Setting	2	32				
Student Communicates Primarily Through Cries	11	32				
Uses Intentional Communication	115	32	19.40	2.67	0.02	2.64
Uses Symbolic Language	519	32	20.11	2.98	0.27	2.55
Undefined Expressive Communication	2	32				

Table O-6. MSAA: Reliability: Subgroup-ELA Grade 4 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,359	32	24.84	3.57	0.64	2.15
Female	341	32	24.94	3.51	0.63	2.13
Male	672	32	25.12	3.56	0.64	2.12
Gender Undefined	346	32	24.21	3.59	0.62	2.23
Hispanic or Latino	233	32	24.57	3.63	0.64	2.18
American Indian or Alaska Native	20	32				
Asian	9	32				
Black or African American	211	32	24.37	3.50	0.60	2.20
Native Hawaiian or Pacific Islander	4	32				
White (non-Hispanic)	617	32	25.29	3.57	0.66	2.09
Two or More Races (non-Hispanic)	30	32	25.37	3.48	0.62	2.15
No Primary race/Ethnicity Undefined	235	32	24.27	3.52	0.60	2.22
Currently receiving LEP services	45	32	24.02	3.80	0.66	2.21
Not receiving LEP services	789	32	25.14	3.58	0.65	2.11
LEP: All Other Students	525	32	24.46	3.49	0.60	2.20
Economically Disadvantaged Students	485	32	25.22	3.66	0.67	2.09
Non-economically Disadvantaged Students	349	32	24.88	3.50	0.62	2.15

continued

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	525	32	24.46	3.49	0.60	2.20
Migrant	1	32				
Non-migrant	829	32	25.09	3.61	0.66	2.11
Undefined Migrant Status	529	32	24.45	3.48	0.60	2.20
Augmentative Communication	70	32	23.87	3.47	0.56	2.30
No Augmentative Communication	1,276	32	24.89	3.57	0.64	2.14
Undefined Augmentative Communications	13	32				
Hearing Loss	19	32				
Within Normal Limits	1,336	32	24.84	3.57	0.64	2.15
Undefined Hearing Loss	4	32				
Visual Impairment	23	32				
Within Normal Limits	1,329	32	24.85	3.58	0.64	2.15
Undefined Visual Impairment	7	32				
Sensory Stimuli Response	11	32				
Follow Directions	1,347	32	24.85	3.57	0.64	2.15
Undefined Receptive Language	1	32				
Special School	46	32	24.72	3.64	0.63	2.21
Regular School Self-contained	837	32	24.74	3.62	0.64	2.16
Regular School Resource Room	270	32	25.01	3.43	0.61	2.14
Regular School Primarily Self-contained	153	32	25.19	3.56	0.66	2.08
Regular School General Education	52	32	24.67	3.52	0.62	2.16
Undefined Classroom Setting	1	32				
Student Communicates Primarily Through Cries	5	32				
Uses Intentional Communication	102	32	23.92	3.50	0.58	2.27
Uses Symbolic Language	1,251	32	24.92	3.56	0.64	2.14
Undefined Expressive Communication	1	32				

Table 0-7. MSAA: Reliability: Subgroup-ELA Grade 5 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,234	32	12.22	3.91	0.56	2.60
Female	211	32	12.26	3.85	0.54	2.60
Male	462	32	12.52	3.98	0.57	2.60
Gender Undefined	561	32	11.95	3.87	0.55	2.59
Hispanic or Latino	254	32	12.42	3.91	0.56	2.61
American Indian or Alaska Native	11	32				
Asian	22	32				
Black or African American	167	32	12.44	3.99	0.58	2.59
Native Hawaiian or Pacific Islander	10	32				
White (non-Hispanic)	341	32	12.39	3.92	0.56	2.61
Two or More Races (non-Hispanic)	25	32	13.04	4.20	0.61	2.61
No Primary race/Ethnicity Undefined	404	32	11.77	3.88	0.56	2.59
Currently receiving LEP services	42	32	12.33	4.15	0.61	2.57
Not receiving LEP services	494	32	12.46	3.92	0.56	2.60
LEP: All Other Students	698	32	12.04	3.89	0.55	2.60
Economically Disadvantaged Students	204	32	12.55	3.96	0.57	2.59
Non-economically Disadvantaged Students	332	32	12.38	3.91	0.56	2.60
SES: All Other Students	698	32	12.04	3.89	0.55	2.60
Migrant	3	32				
Non-migrant	527	32	12.45	3.95	0.57	2.60
Undefined Migrant Status	704	32	12.04	3.89	0.55	2.60
Augmentative Communication	330	32	11.42	3.86	0.55	2.59
No Augmentative Communication	900	32	12.52	3.89	0.55	2.60
Undefined Augmentative Communications	4	32				
Hearing Loss	51	32	12.75	3.72	0.50	2.63
Within Normal Limits	1,180	32	12.19	3.92	0.56	2.60
Undefined Hearing Loss	3	32				
Visual Impairment	54	32	11.19	4.59	0.70	2.53
Within Normal Limits	1,172	32	12.27	3.87	0.55	2.60
Undefined Visual Impairment	8	32				
Sensory Stimuli Response	173	32	10.00	4.39	0.68	2.49

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Follow Directions	1,061	32	12.58	3.71	0.50	2.61
Undefined Receptive Language	0	32				
Special School	186	32	10.81	4.36	0.66	2.54
Regular School Self-contained	824	32	12.18	3.78	0.52	2.60
Regular School Resource Room	129	32	13.28	3.81	0.53	2.61
Regular School Primarily Self-contained	66	32	13.76	3.57	0.47	2.60
Regular School General Education	29	32	14.07	2.52	-0.14	2.70
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through						
Cries	138	32	9.59	4.44	0.69	2.47
Uses Intentional Communication	387	32	11.52	3.63	0.49	2.60
Uses Symbolic Language	709	32	13.11	3.64	0.49	2.61
Undefined Expressive Communication	0	32				

Table 0-8. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 5 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,174	32	17.79	2.94	0.20	2.63
Female	238	32	18.05	2.91	0.20	2.61
Male	462	32	17.74	3.05	0.26	2.62
Gender Undefined	474	32	17.70	2.84	0.13	2.65
Hispanic or Latino	203	32	18.06	2.83	0.14	2.62
American Indian or Alaska Native	18	32				
Asian	18	32				
Black or African American	160	32	17.39	2.87	0.15	2.64
Native Hawaiian or Pacific Islander	7	32				
White (non-Hispanic)	394	32	17.96	3.02	0.25	2.62
Two or More Races (non-Hispanic)	18	32				
No Primary race/Ethnicity Undefined	356	32	17.54	2.88	0.16	2.65
Currently receiving LEP services	34	32	18.71	2.54	-0.07	2.63
Not receiving LEP services	537	32	17.80	3.05	0.26	2.62

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
LEP: All Other Students	603	32	17.72	2.86	0.15	2.64
Economically Disadvantaged Students	259	32	18.02	2.97	0.23	2.61
Non-economically Disadvantaged Students	312	32	17.71	3.06	0.26	2.63
SES: All Other Students	603	32	17.72	2.86	0.15	2.64
Migrant	1	32				
Non-migrant	566	32	17.85	3.03	0.25	2.62
Undefined Migrant Status	607	32	17.73	2.86	0.15	2.64
Augmentative Communication	198	32	17.06	2.70	0.03	2.66
No Augmentative Communication	970	32	17.92	2.96	0.22	2.61
Undefined Augmentative Communications	6	32				
Hearing Loss	14	32				
Within Normal Limits	1,158	32	17.78	2.94	0.20	2.63
Undefined Hearing Loss	2	32				
Visual Impairment	36	32	17.08	3.68	0.48	2.65
Within Normal Limits	1,134	32	17.81	2.91	0.18	2.63
Undefined Visual Impairment	4	32				
Sensory Stimuli Response	57	32	16.44	3.09	0.27	2.65
Follow Directions	1,117	32	17.85	2.92	0.19	2.62
Undefined Receptive Language	0	32				
Special School	87	32	16.79	2.79	0.08	2.67
Regular School Self-contained	768	32	17.78	2.99	0.22	2.63
Regular School Resource Room	204	32	18.16	2.61	0.00	2.61
Regular School Primarily Self-contained	86	32	17.97	3.02	0.28	2.56
Regular School General Education	29	32	17.69	3.57	0.46	2.62
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	42	32	16.10	2.90	0.14	2.69
Uses Intentional Communication	245	32	17.23	3.04	0.23	2.67
Uses Symbolic Language	887	32	18.02	2.87	0.18	2.60
Undefined Expressive Communication	0	32				

Table 0-9. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 5 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,339	32	24.21	3.48	0.60	2.20
Female	324	32	24.35	3.18	0.53	2.19
Male	644	32	24.48	3.59	0.63	2.17
Gender Undefined	371	32	23.61	3.47	0.57	2.28
Hispanic or Latino	204	32	24.04	3.37	0.56	2.22
American Indian or Alaska Native	18	32				
Asian	15	32				
Black or African American	202	32	24.43	3.70	0.65	2.18
Native Hawaiian or Pacific Islander	3	32				
White (non-Hispanic)	606	32	24.53	3.35	0.58	2.17
Two or More Races (non-Hispanic)	30	32	24.27	3.66	0.63	2.21
No Primary race/Ethnicity Undefined	261	32	23.52	3.60	0.60	2.29
Currently receiving LEP services	43	32	24.05	3.45	0.59	2.20
Not receiving LEP services	767	32	24.47	3.48	0.61	2.17
LEP: All Other Students	529	32	23.84	3.45	0.58	2.25
Economically Disadvantaged Students	425	32	24.88	3.30	0.59	2.12
Non-economically Disadvantaged Students	385	32	23.97	3.60	0.61	2.24
SES: All Other Students	529	32	23.84	3.45	0.58	2.25
Migrant	1	32				
Non-migrant	807	32	24.46	3.48	0.61	2.17
Undefined Migrant Status	531	32	23.83	3.45	0.58	2.25
Augmentative Communication	59	32	22.42	3.91	0.63	2.37
No Augmentative Communication	1,274	32	24.28	3.44	0.59	2.19
Undefined Augmentative Communications	6	32				
Hearing Loss	14	32				
Within Normal Limits	1,324	32	24.23	3.48	0.60	2.20
Undefined Hearing Loss	1	32				
Visual Impairment	36	32	23.56	3.07	0.43	2.32
Within Normal Limits	1,297	32	24.23	3.49	0.60	2.20
Undefined Visual Impairment	6	32				

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Sensory Stimuli Response	13	32				
Follow Directions	1,326	32	24.23	3.45	0.59	2.20
Undefined Receptive Language	0	32				
Special School	45	32	22.02	4.20	0.67	2.41
Regular School Self-contained	790	32	24.18	3.58	0.62	2.21
Regular School Resource Room	283	32	24.49	3.22	0.54	2.18
Regular School Primarily Self-contained	150	32	24.37	3.11	0.52	2.16
Regular School General Education	71	32	24.45	3.08	0.49	2.19
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	10	32				
Uses Intentional Communication	117	32	23.37	4.18	0.70	2.29
Uses Symbolic Language	1,212	32	24.31	3.38	0.58	2.19
Undefined Expressive Communication	0	32				

Table 0-10. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 6 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,826	32	14.85	4.43	0.65	2.63
Female	359	32	15.02	4.63	0.68	2.63
Male	673	32	14.98	4.30	0.62	2.64
Gender Undefined	794	32	14.67	4.44	0.65	2.63
Hispanic or Latino	332	32	14.63	4.61	0.68	2.62
American Indian or Alaska Native	20	32				
Asian	24	32				
Black or African American	222	32	14.93	4.44	0.65	2.63
Native Hawaiian or Pacific Islander	16	32				
White (non-Hispanic)	555	32	15.13	4.22	0.61	2.64
Two or More Races (non-Hispanic)	35	32	15.14	4.99	0.72	2.64
No Primary race/Ethnicity Undefined	622	32	14.67	4.43	0.65	2.63
Currently receiving LEP services	46	32	14.46	4.12	0.59	2.63
Not receiving LEP services	765	32	15.10	4.30	0.62	2.64

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
LEP: All Other Students	1,015	32	14.69	4.53	0.66	2.63
Economically Disadvantaged Students	356	32	15.56	4.34	0.63	2.63
Non-economically Disadvantaged Students	455	32	14.67	4.21	0.61	2.64
SES: All Other Students	1,015	32	14.69	4.53	0.66	2.63
Migrant	0	32				
Non-migrant	798	32	15.05	4.31	0.63	2.64
Undefined Migrant Status	1,028	32	14.70	4.51	0.66	2.63
Augmentative Communication	455	32	13.93	4.11	0.58	2.67
No Augmentative Communication	1,361	32	15.16	4.48	0.66	2.62
Undefined Augmentative Communications	10	32				
Hearing Loss	58	32	15.12	4.22	0.60	2.68
Within Normal Limits	1,757	32	14.84	4.44	0.65	2.63
Undefined Hearing Loss	11	32				
Visual Impairment	100	32	13.25	5.32	0.76	2.60
Within Normal Limits	1,715	32	14.95	4.35	0.63	2.64
Undefined Visual Impairment	11	32				
Sensory Stimuli Response	233	32	12.59	5.13	0.75	2.59
Follow Directions	1,593	32	15.19	4.22	0.61	2.64
Undefined Receptive Language	0	32				
Special School	270	32	13.56	4.65	0.68	2.63
Regular School Self-contained	1,268	32	14.79	4.32	0.63	2.64
Regular School Resource Room	192	32	16.20	4.35	0.64	2.59
Regular School Primarily Self-contained	66	32	17.00	4.06	0.60	2.57
Regular School General Education	30	32	15.77	3.87	0.53	2.65
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through						
Cries	192	32	12.13	5.23	0.76	2.58
Uses Intentional Communication	548	32	13.91	4.15	0.59	2.65
Uses Symbolic Language	1,086	32	15.81	4.10	0.59	2.62
Undefined Expressive Communication	0	32				

Table O-11. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 6 Path B

Description	Number	Raw Score			Alpha	Standard Error
	of Students	Maximum	Mean	Standard Deviation		
All Students	687	32	20.07	2.94	0.29	2.47
Female	133	32	20.11	2.93	0.30	2.45
Male	256	32	20.11	3.03	0.34	2.46
Gender Undefined	298	32	20.00	2.88	0.25	2.49
Hispanic or Latino	140	32	20.08	2.86	0.25	2.47
American Indian or Alaska Native	9	32				
Asian	4	32				
Black or African American	83	32	19.96	3.11	0.36	2.48
Native Hawaiian or Pacific Islander	1	32				
White (non-Hispanic)	207	32	20.17	2.97	0.32	2.45
Two or More Races (non-Hispanic)	17	32				
No Primary race/Ethnicity Undefined	226	32	20.08	2.96	0.29	2.49
Currently receiving LEP services	21	32				
Not receiving LEP services	281	32	20.16	3.08	0.36	2.46
LEP: All Other Students	385	32	20.00	2.84	0.24	2.48
Economically Disadvantaged Students	155	32	20.40	3.18	0.40	2.46
Non-economically Disadvantaged Students	147	32	19.88	2.93	0.29	2.46
SES: All Other Students	385	32	20.00	2.84	0.24	2.48
Migrant	1	32				
Non-migrant	299	32	20.17	3.07	0.36	2.46
Undefined Migrant Status	387	32	19.99	2.83	0.23	2.48
Augmentative Communication	59	32	19.39	3.10	0.32	2.56
No Augmentative Communication	624	32	20.14	2.93	0.29	2.46
Undefined Augmentative Communications	4	32				
Hearing Loss	9	32				
Within Normal Limits	676	32	20.07	2.93	0.29	2.47
Undefined Hearing Loss	2	32				
Visual Impairment	7	32				
Within Normal Limits	678	32	20.08	2.94	0.30	2.47
Undefined Visual Impairment	2	32				
Sensory Stimuli Response	19	32				
Follow Directions	668	32	20.09	2.91	0.28	2.47
						continued

Description		Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	0	32				
Special School	40	32	19.08	3.65	0.53	2.50
Regular School Self-contained	464	32	19.98	2.93	0.28	2.48
Regular School Resource Room	122	32	20.40	2.82	0.25	2.44
Regular School Primarily Self-contained	47	32	20.66	2.60	0.13	2.43
Regular School General Education	14	32				
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	9	32				
Uses Intentional Communication	96	32	19.45	2.73	0.13	2.55
Uses Symbolic Language	582	32	20.22	2.93	0.30	2.45
Undefined Expressive Communication	0	32				

Table 0-12. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 6 Path C

Description		Number of Students	Raw Score			
	Maximum	Mean	Standard Deviation		Standard Error	
All Students	1,361	32	24.64	3.37		2.08
Female	334	32	24.68	3.36	0.62	2.06
Male	611	32	24.89	3.46	0.64	2.06
Gender Undefined	416	32	24.23	3.20	0.56	2.11
Hispanic or Latino	205	32	24.11	3.29	0.59	2.11
American Indian or Alaska Native	31	32	24.77	3.95	0.75	1.98
Asian	5	32				
Black or African American	205	32	24.80	3.48	0.64	2.09
Native Hawaiian or Pacific Islander	6	32				
White (non-Hispanic)	571	32	24.93	3.45	0.65	2.04
Two or More Races (non-Hispanic)	24	32				
No Primary race/Ethnicity Undefined	314	32	24.30	3.11	0.54	2.11
Currently receiving LEP services	36	32	23.81	3.44	0.61	2.14
Not receiving LEP services	755	32	24.96	3.46	0.65	2.05
LEP: All Other Students	570	32	24.26	3.19	0.56	2.10
Economically Disadvantaged Students	438	32	25.24	3.48	0.66	2.02
Non-economically Disadvantaged Students	353	32	24.50	3.41	0.62	2.10

Description	$\begin{aligned} & \hline \begin{array}{c} \text { Number } \\ \text { of } \\ \text { Students } \end{array} \end{aligned}$	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	570	32	24.26	3.19	0.56	2.10
Migrant	2	32				
Non-migrant	787	32	24.91	3.47	0.65	2.06
Undefined Migrant Status	572	32	24.26	3.19	0.56	2.11
Augmentative Communication	45	32	25.33	3.46	0.64	2.07
No Augmentative Communication	1,310	32	24.62	3.36	0.62	2.08
Undefined Augmentative Communications	6	32				
Hearing Loss	29	32	24.41	3.10	0.52	2.14
Within Normal Limits	1,330	32	24.65	3.37	0.62	2.08
Undefined Hearing Loss	2	32				
Visual Impairment	30	32	24.63	3.06	0.52	2.11
Within Normal Limits	1,327	32	24.63	3.38	0.62	2.08
Undefined Visual Impairment	4	32				
Sensory Stimuli Response	10	32				
Follow Directions	1,351	32	24.64	3.37	0.62	2.08
Undefined Receptive Language	0	32				
Special School	46	32	24.54	3.36	0.59	2.15
Regular School Self-contained	863	32	24.47	3.42	0.63	2.09
Regular School Resource Room	271	32	25.08	3.13	0.58	2.04
Regular School Primarily Self-contained	135	32	24.84	3.34	0.63	2.02
Regular School General Education	46	32	24.67	3.61	0.67	2.06
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	7	32				
Uses Intentional Communication	91	32	23.95	3.16	0.54	2.15
Uses Symbolic Language	1,263	32	24.68	3.37	0.62	2.07
Undefined Expressive Communication	0	32				

Table 0-13. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 7 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,253	32	13.31	4.08	0.59	2.63
Female	214	32	13.05	4.11	0.59	2.63
Male	447	32	13.82	4.12	0.60	2.62
Gender Undefined	592	32	13.03	4.02	0.57	2.63
Hispanic or Latino	224	32	13.01	4.30	0.64	2.58
American Indian or Alaska Native	14	32				
Asian	21	32				
Black or African American	156	32	13.27	4.30	0.63	2.61
Native Hawaiian or Pacific Islander	14	32				
White (non-Hispanic)	346	32	13.84	4.05	0.58	2.64
Two or More Races (non-Hispanic)	18	32				
No Primary race/Ethnicity Undefined	460	32	13.09	3.92	0.55	2.64
Currently receiving LEP services	32	32	13.34	4.37	0.66	2.55
Not receiving LEP services	495	32	13.55	4.16	0.60	2.63
LEP: All Other Students	726	32	13.15	4.02	0.57	2.62
Economically Disadvantaged Students	230	32	13.48	4.57	0.68	2.59
Non-economically Disadvantaged Students	297	32	13.59	3.83	0.52	2.66
SES: All Other Students	726	32	13.15	4.02	0.57	2.62
Migrant	0	32				
Non-migrant	509	32	13.58	4.20	0.61	2.63
Undefined Migrant Status	744	32	13.13	4.00	0.57	2.62
Augmentative Communication	351	32	12.30	3.90	0.55	2.62
No Augmentative Communication	898	32	13.70	4.07	0.59	2.62
Undefined Augmentative Communications	4	32				
Hearing Loss	48	32	11.81	4.10	0.60	2.58
Within Normal Limits	1,196	32	13.38	4.08	0.58	2.63
Undefined Hearing Loss	9	32				
Visual Impairment	70	32	10.87	4.69	0.71	2.53
Within Normal Limits	1,174	32	13.46	4.00	0.57	2.63
Undefined Visual Impairment	9	32				
Sensory Stimuli Response	150	32	10.44	4.42	0.67	2.52
Follow Directions	1,102	32	13.70	3.87	0.54	2.64

Description	Number	Raw Score					

Table O-14. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 7 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,047	32	18.14	3.07	0.25	2.67
Female	223	32	18.42	2.80	0.11	2.65
Male	410	32	18.32	3.11	0.27	2.65
Gender Undefined	414	32	17.82	3.15	0.27	2.69
Hispanic or Latino	177	32	17.92	2.94	0.17	2.69
American Indian or Alaska Native	21	32				
Asian	11	32				
Black or African American	141	32	18.60	2.94	0.19	2.65
Native Hawaiian or Pacific Islander	3	32				
White (non-Hispanic)	361	32	18.42	3.06	0.25	2.65
Two or More Races (non-Hispanic)	14	32				
No Primary race/Ethnicity Undefined	319	32	17.78	3.22	0.30	2.68
Currently receiving LEP services	28	32	18.43	3.10	0.28	2.62
Not receiving LEP services	472	32	18.33	2.97	0.20	2.66
LEP: All Other Students	547	32	17.97	3.15	0.28	2.67

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Economically Disadvantaged Students	244	32	18.49	3.02	0.24	2.63
Non-economically Disadvantaged Students	256	32	18.20	2.93	0.16	2.68
SES: All Other Students	547	32	17.97	3.15	0.28	2.67
Migrant	0	32				
Non-migrant	499	32	18.35	2.97	0.20	2.66
Undefined Migrant Status	548	32	17.96	3.16	0.28	2.67
Augmentative Communication	128	32	17.13	3.19	0.26	2.74
No Augmentative Communication	911	32	18.27	3.03	0.24	2.65
Undefined Augmentative Communications	8	32				
Hearing Loss	28	32	17.68	2.79	0.04	2.74
Within Normal Limits	1,014	32	18.16	3.08	0.25	2.66
Undefined Hearing Loss	5	32				
Visual Impairment	54	32	18.20	2.92	0.13	2.72
Within Normal Limits	985	32	18.13	3.08	0.25	2.66
Undefined Visual Impairment	8	32				
Sensory Stimuli Response	37	32	15.89	2.70	-0.05	2.76
Follow Directions	1,008	32	18.22	3.05	0.24	2.66
Undefined Receptive Language	2	32				
Special School	103	32	17.31	3.47	0.39	2.71
Regular School Self-contained	708	32	18.08	2.98	0.20	2.67
Regular School Resource Room	136	32	18.49	3.21	0.33	2.63
Regular School Primarily Self-contained	67	32	18.90	2.80	0.13	2.62
Regular School General Education	31	32	19.06	3.03	0.26	2.60
Undefined Classroom Setting	2	32				
Student Communicates Primarily Through Cries	30	32	15.90	3.14	0.24	2.74
Uses Intentional Communication	193	32	17.39	2.88	0.10	2.73
Uses Symbolic Language	822	32	18.40	3.05	0.26	2.64
Undefined Expressive Communication	2	32				

Table 0-15. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 7 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,545	32	24.31	3.44	0.58	2.22
Female	396	32	24.31	3.37	0.57	2.20
Male	662	32	24.53	3.46	0.59	2.20
Gender Undefined	487	32	24.01	3.46	0.57	2.26
Hispanic or Latino	215	32	24.31	3.33	0.54	2.25
American Indian or Alaska Native	24	32				
Asian	7	32				
Black or African American	244	32	24.23	3.36	0.56	2.22
Native Hawaiian or Pacific Islander	4	32				
White (non-Hispanic)	632	32	24.57	3.47	0.60	2.18
Two or More Races (non-Hispanic)	26	32	23.54	3.65	0.62	2.24
No Primary race/Ethnicity Undefined	393	32	24.04	3.53	0.59	2.25
Currently receiving LEP services	36	32	24.75	2.93	0.44	2.19
Not receiving LEP services	841	32	24.53	3.51	0.61	2.19
LEP: All Other Students	668	32	24.01	3.35	0.55	2.25
Economically Disadvantaged Students	483	32	24.71	3.35	0.58	2.18
Non-economically Disadvantaged Students	394	32	24.33	3.65	0.63	2.21
SES: All Other Students	668	32	24.01	3.35	0.55	2.25
Migrant	3	32				
Non-migrant	872	32	24.53	3.50	0.61	2.19
Undefined Migrant Status	670	32	24.02	3.35	0.55	2.25
Augmentative Communication	59	32	22.88	3.69	0.59	2.35
No Augmentative Communication	1,477	32	24.37	3.42	0.58	2.21
Undefined Augmentative Communications	9	32				
Hearing Loss	13	32				
Within Normal Limits	1,527	32	24.29	3.44	0.58	2.22
Undefined Hearing Loss	5	32				
Visual Impairment	30	32	23.60	3.27	0.54	2.23
Within Normal Limits	1,500	32	24.34	3.43	0.58	2.22
Undefined Visual Impairment	15	32				
Sensory Stimuli Response	16	32				
Follow Directions	1,529	32	24.34	3.42	0.58	2.22

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	0	32				
Special School	56	32	22.73	3.76	0.61	2.36
Regular School Self-contained	983	32	24.25	3.47	0.59	2.23
Regular School Resource Room	281	32	24.68	3.18	0.53	2.18
Regular School Primarily Self-contained	167	32	24.51	3.44	0.60	2.19
Regular School General Education	58	32	24.52	3.52	0.62	2.17
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through						
Cries	14	32				
Uses Intentional Communication	113	32	23.51	3.64	0.59	2.32
Uses Symbolic Language	1,418	32	24.39	3.40	0.58	2.21
Undefined Expressive Communication	0	32				

Table 0-16. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 8 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Economically Disadvantaged Students	295	32	15.04	4.34	0.62	2.67
Non-economically Disadvantaged Students	528	32	14.62	4.21	0.60	2.66
SES: All Other Students	1,025	32	14.80	4.19	0.60	2.66
Migrant	1	32				
Non-migrant	809	32	14.79	4.27	0.61	2.66
Undefined Migrant Status	1,038	32	14.78	4.18	0.59	2.66
Augmentative Communication	430	32	13.14	3.98	0.55	2.66
No Augmentative Communication	1,401	32	15.30	4.17	0.59	2.66
Undefined Augmentative Communications	17	32				
Hearing Loss	75	32	13.88	4.25	0.60	2.67
Within Normal Limits	1,758	32	14.84	4.20	0.60	2.66
Undefined Hearing Loss	15	32				
Visual Impairment	100	32	14.23	4.01	0.55	2.70
Within Normal Limits	1,734	32	14.83	4.23	0.60	2.66
Undefined Visual Impairment	14	32				
Sensory Stimuli Response	189	32	11.92	4.70	0.69	2.60
Follow Directions	1,657	32	15.12	4.03	0.56	2.67
Undefined Receptive Language	2	32				
Special School	258	32	13.13	4.31	0.62	2.65
Regular School Self-contained	1,283	32	14.82	4.16	0.59	2.67
Regular School Resource Room	202	32	16.21	3.89	0.54	2.64
Regular School Primarily Self-contained	70	32	16.04	3.69	0.50	2.62
Regular School General Education	33	32	15.48	4.24	0.61	2.64
Undefined Classroom Setting	2	32				
Student Communicates Primarily Through Cries	184	32	11.82	4.65	0.69	2.60
Uses Intentional Communication	534	32	13.50	4.04	0.56	2.67
Uses Symbolic Language	1,128	32	15.89	3.80	0.51	2.65
Undefined Expressive Communication	2	32				

Table O-17. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 8 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	827	32	20.40	2.79	0.19	2.51
Female	175	32	20.65	2.75	0.17	2.50
Male	341	32	20.47	2.79	0.19	2.51
Gender Undefined	311	32	20.17	2.81	0.20	2.52
Hispanic or Latino	129	32	20.53	2.95	0.30	2.47
American Indian or Alaska Native	13	32				
Asian	7	32				
Black or African American	134	32	20.49	2.91	0.26	2.50
Native Hawaiian or Pacific Islander	7	32				
White (non-Hispanic)	284	32	20.46	2.70	0.14	2.51
Two or More Races (non-Hispanic)	14	32				
No Primary race/Ethnicity Undefined	239	32	20.13	2.81	0.19	2.53
Currently receiving LEP services	21	32				
Not receiving LEP services	402	32	20.41	2.80	0.19	2.51
LEP: All Other Students	404	32	20.36	2.78	0.18	2.51
Economically Disadvantaged Students	203	32	20.48	2.93	0.28	2.49
Non-economically Disadvantaged Students	220	32	20.38	2.70	0.13	2.53
SES: All Other Students	404	32	20.36	2.78	0.18	2.51
Migrant	0	32				
Non-migrant	418	32	20.41	2.82	0.21	2.51
Undefined Migrant Status	409	32	20.38	2.77	0.17	2.51
Augmentative Communication	72	32	19.75	2.97	0.24	2.59
No Augmentative Communication	749	32	20.47	2.77	0.19	2.50
Undefined Augmentative Communications	6	32				
Hearing Loss	12	32				
Within Normal Limits	810	32	20.40	2.81	0.20	2.51
Undefined Hearing Loss	5	32				
Visual Impairment	28	32	20.89	3.11	0.30	2.59
Within Normal Limits	796	32	20.38	2.78	0.19	2.51
Undefined Visual Impairment	3	32				
Sensory Stimuli Response	17	32				
Follow Directions	810	32	20.41	2.79	0.19	2.51

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	0	32				
Special School	58	32	19.83	2.74	0.10	2.60
Regular School Self-contained	531	32	20.36	2.81	0.20	2.51
Regular School Resource Room	145	32	20.42	2.67	0.13	2.49
Regular School Primarily Self-contained	70	32	21.04	3.01	0.34	2.44
Regular School General Education	23	32				
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	16	32				
Uses Intentional Communication	104	32	19.75	2.44	-0.14	2.60
Uses Symbolic Language	707	32	20.50	2.83	0.23	2.49
Undefined Expressive Communication	0	32				

Table O-18. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 8 Path C
Table M-19.

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,426	32	25.30	3.23	0.58	2.10
Female	347	32	25.47	3.09	0.54	2.08
Male	620	32	25.52	3.24	0.59	2.08
Gender Undefined	459	32	24.88	3.27	0.57	2.14
Hispanic or Latino	216	32	24.72	3.40	0.61	2.14
American Indian or Alaska Native	20	32				
Asian	14	32				
Black or African American	187	32	25.13	3.16	0.56	2.11
Native Hawaiian or Pacific Islander	7	32				
White (non-Hispanic)	619	32	25.75	3.21	0.59	2.06
Two or More Races (non-Hispanic)	29	32	24.86	2.72	0.35	2.20
No Primary race/Ethnicity Undefined	334	32	25.02	3.16	0.54	2.14
Currently receiving LEP services	30	32	24.37	3.25	0.57	2.14
Not receiving LEP services	791	32	25.60	3.21	0.58	2.07
LEP: All Other Students	605	32	24.96	3.21	0.56	2.13
Economically Disadvantaged Students	434	32	25.91	3.13	0.58	2.03

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Non-economically Disadvantaged Students	387	32	25.15	3.27	0.58	2.13
SES: All Other Students	605	32	24.96	3.21	0.56	2.13
Migrant	2	32				
Non-migrant	816	32	25.57	3.22	0.58	2.08
Undefined Migrant Status	608	32	24.95	3.21	0.56	2.13
Augmentative Communication	42	32	24.05	3.79	0.66	2.22
No Augmentative Communication	1,375	32	25.34	3.21	0.57	2.10
Undefined Augmentative Communications	9	32				
Hearing Loss	19	32				
Within Normal Limits	1,401	32	25.30	3.23	0.58	2.10
Undefined Hearing Loss	6	32				
Visual Impairment	40	32	25.13	3.63	0.65	2.15
Within Normal Limits	1,381	32	25.30	3.22	0.57	2.10
Undefined Visual Impairment	5	32				
Sensory Stimuli Response	13	32				
Follow Directions	1,413	32	25.31	3.22	0.58	2.10
Undefined Receptive Language	0	32				
Special School	57	32	24.32	3.63	0.64	2.18
Regular School Self-contained	864	32	25.15	3.26	0.58	2.12
Regular School Resource Room	340	32	25.83	3.00	0.53	2.05
Regular School Primarily Self-contained	127	32	25.24	3.37	0.61	2.10
Regular School General Education	38	32	25.66	2.58	0.37	2.05
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through						
Cries	7	32				
Uses Intentional Communication	97	32	24.16	3.34	0.55	2.23
Uses Symbolic Language	1,322	32	25.40	3.20	0.57	2.09
Undefined Expressive Communication	0	32				

Table O-20. 2016-17 MSAA: Reliability: Subgroup-ELA Grade 11 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,126	32	12.45	3.83	0.52	2.64
Female	216	32	12.76	3.92	0.55	2.64
Male	394	32	12.23	4.08	0.59	2.62
Gender Undefined	516	32	12.49	3.57	0.45	2.66
Hispanic or Latino	150	32	11.85	4.05	0.59	2.60
American Indian or Alaska Native	13	32				
Asian	17	32				
Black or African American	175	32	12.09	4.60	0.68	2.59
Native Hawaiian or Pacific Islander	14	32				
White (non-Hispanic)	323	32	12.93	3.55	0.44	2.66
Two or More Races (non-Hispanic)	12	32				
No Primary race/Ethnicity Undefined	422	32	12.67	3.43	0.40	2.67
Currently receiving LEP services	16	32				
Not receiving LEP services	443	32	12.67	3.94	0.55	2.63
LEP: All Other Students	667	32	12.34	3.71	0.49	2.65
Economically Disadvantaged Students	193	32	12.91	3.90	0.54	2.64
Non-economically Disadvantaged Students	266	32	12.40	4.04	0.58	2.62
SES: All Other Students	667	32	12.34	3.71	0.49	2.65
Migrant	1	32				
Non-migrant	443	32	12.70	3.93	0.55	2.63
Undefined Migrant Status	682	32	12.28	3.75	0.50	2.64
Augmentative Communication	278	32	11.88	3.53	0.44	2.64
No Augmentative Communication	843	32	12.64	3.91	0.54	2.64
Undefined Augmentative Communications	5	32				
Hearing Loss	58	32	12.16	4.06	0.60	2.58
Within Normal Limits	1,064	32	12.47	3.82	0.52	2.64
Undefined Hearing Loss	4	32				
Visual Impairment	59	32	11.90	4.09	0.59	2.63
Within Normal Limits	1,062	32	12.48	3.82	0.52	2.64
Undefined Visual Impairment	5	32				

continued

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Sensory Stimuli Response	139	32	9.94	4.98	0.76	2.45
Follow Directions	987	32	12.80	3.50	0.42	2.66
Undefined Receptive Language	0	32				
Special School	257	32	11.93	3.87	0.54	2.62
Regular School Self-contained	729	32	12.55	3.79	0.51	2.64
Regular School Resource Room	100	32	12.76	3.89	0.53	2.66
Regular School Primarily Self-contained	36	32	13.08	4.06	0.59	2.60
Regular School General Education	4	32				
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	125	32	9.42	5.21	0.79	2.41
Uses Intentional Communication	327	32	11.98	3.48	0.42	2.65
Uses Symbolic Language	674	32	13.24	3.34	0.37	2.66
Undefined Expressive Communication	0	32				

Table O-21. MSAA: Reliability: Subgroup- ELA Grade 11 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	994	32	18.13	3.24	0.32	2.66
Female	188	32	18.62	3.12	0.28	2.65
Male	369	32	18.18	3.24	0.32	2.66
Gender Undefined	437	32	17.88	3.27	0.33	2.67
Hispanic or Latino	140	32	17.71	3.51	0.42	2.67
American Indian or Alaska Native	10	32				
Asian	6	32				
Black or African American	145	32	18.28	3.13	0.29	2.64
Native Hawaiian or Pacific Islander	8	32				
White (non-Hispanic)	321	32	18.40	3.22	0.32	2.66
Two or More Races (non-Hispanic)	6	32				
No Primary race/Ethnicity Undefined	358	32	17.98	3.14	0.28	2.67
Currently receiving LEP services	18	32				
Not receiving LEP services	426	32	18.47	3.16	0.30	2.64
LEP: All Other Students	550	32	17.85	3.26	0.33	2.68

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Economically Disadvantaged Students	197	32	18.91	3.08	0.29	2.60
Non-economically Disadvantaged Students	247	32	18.13	3.22	0.31	2.67
SES: All Other Students	550	32	17.85	3.26	0.33	2.68
Migrant	1	32				
Non-migrant	440	32	18.49	3.18	0.31	2.64
Undefined Migrant Status	553	32	17.84	3.26	0.33	2.68
Augmentative Communication	115	32	17.21	3.14	0.24	2.73
No Augmentative Communication	875	32	18.24	3.24	0.33	2.65
Undefined Augmentative Communications	4	32				
Hearing Loss	29	32	17.48	3.28	0.31	2.72
Within Normal Limits	963	32	18.15	3.23	0.32	2.66
Undefined Hearing Loss	2	32				
Visual Impairment	30	32	18.17	3.78	0.49	2.69
Within Normal Limits	958	32	18.15	3.21	0.31	2.66
Undefined Visual Impairment	6	32				
Sensory Stimuli Response	27	32	15.96	3.03	0.16	2.78
Follow Directions	967	32	18.19	3.22	0.32	2.66
Undefined Receptive Language	0	32				
Special School	127	32	17.03	3.31	0.32	2.74
Regular School Self-contained	653	32	18.17	3.19	0.31	2.66
Regular School Resource Room	136	32	18.69	3.21	0.35	2.60
Regular School Primarily Self-contained	61	32	18.75	3.20	0.34	2.60
Regular School General Education	17	32				
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	24	32				
Uses Intentional Communication	135	32	16.92	3.15	0.25	2.74
Uses Symbolic Language	835	32	18.37	3.21	0.32	2.64
Undefined Expressive Communication	0	32				

Table O-22. MSAA: Reliability: Subgroup- ELA Grade 11 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,361	32	23.33	3.57	0.62	2.19
Female	275	32	23.55	3.36	0.59	2.15
Male	584	32	23.68	3.77	0.67	2.16
Gender Undefined	502	32	22.80	3.37	0.56	2.24
Hispanic or Latino	165	32	22.50	3.52	0.59	2.25
American Indian or Alaska Native	13	32				
Asian	5	32				
Black or African American	201	32	23.53	3.82	0.67	2.19
Native Hawaiian or Pacific Islander	2	32				
White (non-Hispanic)	531	32	23.69	3.57	0.64	2.14
Two or More Races (non-Hispanic)	18	32				
No Primary race/Ethnicity Undefined	426	32	23.00	3.37	0.57	2.22
Currently receiving LEP services	25	32	22.72	3.57	0.61	2.23
Not receiving LEP services	689	32	23.67	3.70	0.66	2.16
LEP: All Other Students	647	32	22.99	3.39	0.57	2.22
Economically Disadvantaged Students	371	32	23.99	3.59	0.65	2.13
Non-economically Disadvantaged Students	343	32	23.25	3.78	0.66	2.19
SES: All Other Students	647	32	22.99	3.39	0.57	2.22
Migrant	2	32				
Non-migrant	711	32	23.63	3.70	0.66	2.16
Undefined Migrant Status	648	32	22.99	3.39	0.57	2.22
Augmentative Communication	55	32	21.04	3.72	0.58	2.40
No Augmentative Communication	1,299	32	23.42	3.53	0.62	2.18
Undefined Augmentative Communications	7	32				
Hearing Loss	24	32				
Within Normal Limits	1,334	32	23.35	3.56	0.62	2.18
Undefined Hearing Loss	3	32				
Visual Impairment	30	32	22.77	4.17	0.71	2.24
Within Normal Limits	1,325	32	23.35	3.56	0.62	2.18
Undefined Visual Impairment	6	32				
Sensory Stimuli Response	5	32				
Follow Directions	1,356	32	23.33	3.57	0.62	2.19

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	0	32				
Special School	76	32	22.49	3.93	0.66	2.29
Regular School Self-contained	862	32	23.24	3.54	0.61	2.20
Regular School Resource Room	267	32	23.25	3.68	0.65	2.18
Regular School Primarily Self-contained	133	32	24.52	3.24	0.60	2.05
Regular School General Education	23	32				
Undefined Classroom Setting	0	32				
Student Communicates Primarily Through Cries	4	32				
Uses Intentional Communication	84	32	22.62	3.90	0.64	2.35
Uses Symbolic Language	1,273	32	23.37	3.54	0.62	2.17
Undefined Expressive Communication	0	32				

Table O-23. MSAA: Reliability: Subgroup-Mathematics Grade 3 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,272	35	12.21	3.70	0.48	2.68
Female	279	35	12.40	3.78	0.49	2.69
Male	477	35	12.36	3.59	0.44	2.69
Gender Undefined	516	35	11.97	3.75	0.50	2.66
Hispanic or Latino	231	35	12.17	3.66	0.47	2.67
American Indian or Alaska Native	20	35				
Asian	19	35				
Black or African American	156	35	12.19	3.62	0.45	2.68
Native Hawaiian or Pacific Islander	8	35				
White (non-Hispanic)	400	35	12.61	3.55	0.42	2.70
Two or More Races (non-Hispanic)	27	35	13.11	5.29	0.76	2.60
No Primary race/Ethnicity Undefined	411	35	11.91	3.73	0.49	2.66
Currently receiving LEP services	43	35	11.53	3.30	0.36	2.65
Not receiving LEP services	556	35	12.46	3.74	0.48	2.69
LEP: All Other Students	673	35	12.04	3.68	0.47	2.67
Economically Disadvantaged Students	266	35	12.34	4.00	0.55	2.69
Non-economically Disadvantaged Students	333	35	12.44	3.49	0.40	2.69

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	673	35	12.04	3.68	0.47	2.67
Migrant	0	35				
Non-migrant	588	35	12.40	3.74	0.48	2.69
Undefined Migrant Status	684	35	12.05	3.66	0.47	2.67
Augmentative Communication	315	35	11.30	3.94	0.55	2.64
No Augmentative Communication	951	35	12.50	3.57	0.43	2.69
Undefined Augmentative Communications	6	35				
Hearing Loss	56	35	10.27	4.31	0.65	2.56
Within Normal Limits	1,208	35	12.30	3.64	0.46	2.68
Undefined Hearing Loss	8	35				
Visual Impairment	76	35	10.26	4.10	0.60	2.59
Within Normal Limits	1,189	35	12.32	3.64	0.46	2.68
Undefined Visual Impairment	7	35				
Sensory Stimuli Response	204	35	10.12	4.18	0.63	2.55
Follow Directions	1,066	35	12.60	3.46	0.39	2.70
Undefined Receptive Language	2	35				
Special School	146	35	10.76	3.93	0.56	2.60
Regular School Self-contained	902	35	12.27	3.56	0.43	2.68
Regular School Resource Room	144	35	12.70	3.54	0.42	2.71
Regular School Primarily Self-contained	50	35	13.30	4.55	0.65	2.70
Regular School General Education	28	35	13.21	4.07	0.57	2.68
Undefined Classroom Setting	2	35				
Student Communicates Primarily Through						
Cries	138	35	9.73	4.38	0.67	2.53
Uses Intentional Communication	433	35	11.70	3.29	0.34	2.67
Uses Symbolic Language	699	35	13.00	3.53	0.41	2.70
Undefined Expressive Communication	2	35				

Table O-24. MSAA: Reliability: Subgroup-Mathematics Grade 3 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	856	35	15.78	3.04	0.15	2.80
Female	198	35	15.79	3.18	0.24	2.77
Male	357	35	16.11	3.15	0.21	2.80
Gender Undefined	301	35	15.37	2.77	-0.04	2.82
Hispanic or Latino	155	35	15.92	3.02	0.15	2.79
American Indian or Alaska Native	11	35				
Asian	11	35				
Black or African American	114	35	15.82	3.18	0.22	2.80
Native Hawaiian or Pacific Islander	8	35				
White (non-Hispanic)	301	35	16.03	3.15	0.21	2.79
Two or More Races (non-Hispanic)	32	35	16.34	3.02	0.15	2.79
No Primary race/Ethnicity Undefined	224	35	15.21	2.77	-0.04	2.82
Currently receiving LEP services	29	35	16.21	2.51	-0.20	2.75
Not receiving LEP services	417	35	15.99	3.20	0.24	2.79
LEP: All Other Students	410	35	15.54	2.89	0.05	2.82
Economically Disadvantaged Students	220	35	15.76	3.13	0.21	2.77
Non-economically Disadvantaged Students	226	35	16.24	3.18	0.23	2.80
SES: All Other Students	410	35	15.54	2.89	0.05	2.82
Migrant	0	35				
Non-migrant	437	35	15.97	3.17	0.23	2.79
Undefined Migrant Status	419	35	15.58	2.89	0.05	2.82
Augmentative Communication	139	35	14.94	3.29	0.27	2.81
No Augmentative Communication	709	35	15.95	2.96	0.11	2.79
Undefined Augmentative Communications	8	35				
Hearing Loss	20	35				
Within Normal Limits	834	35	15.79	3.01	0.13	2.80
Undefined Hearing Loss	2	35				
Visual Impairment	24	35				
Within Normal Limits	826	35	15.78	3.05	0.16	2.80
Undefined Visual Impairment	6	35				
Sensory Stimuli Response	54	35	14.19	2.47	-0.31	2.82
Follow Directions	801	35	15.88	3.05	0.16	2.80

Description	Number	Raw Score					

Table O-25. MSAA: Reliability: Subgroup-Mathematics Grade 3 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,340	35	23.24	5.07	0.75	2.52
Female	307	35	23.24	4.87	0.74	2.50
Male	657	35	23.44	5.18	0.77	2.50
Gender Undefined	376	35	22.89	5.05	0.74	2.57
Hispanic or Latino	219	35	23.16	5.07	0.75	2.52
American Indian or Alaska Native	21	35				
Asian	13	35				
Black or African American	195	35	22.50	5.04	0.74	2.56
Native Hawaiian or Pacific Islander	7	35				
White (non-Hispanic)	570	35	23.91	5.11	0.77	2.46
Two or More Races (non-Hispanic)	42	35	23.02	4.61	0.69	2.59
No Primary race/Ethnicity Undefined	273	35	22.62	5.04	0.73	2.60
Currently receiving LEP services	40	35	22.60	4.99	0.74	2.52
Not receiving LEP services	740	35	23.45	5.11	0.76	2.49
LEP: All Other Students	560	35	23.00	5.03	0.74	2.55
Economically Disadvantaged Students	448	35	23.63	5.18	0.77	2.47
Non-economically Disadvantaged Students	332	35	23.11	4.98	0.74	2.54

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	560	35	23.00	5.03	0.74	2.55
Migrant	1	35				
Non-migrant	775	35	23.43	5.10	0.76	2.49
Undefined Migrant Status	564	35	22.97	5.03	0.74	2.56
Augmentative Communication	128	35	20.92	5.22	0.74	2.68
No Augmentative Communication	1,208	35	23.47	5.00	0.75	2.50
Undefined Augmentative Communications	4	35				
Hearing Loss	21	35				
Within Normal Limits	1,317	35	23.27	5.04	0.75	2.52
Undefined Hearing Loss	2	35				
Visual Impairment	22	35				
Within Normal Limits	1,309	35	23.27	5.06	0.75	2.52
Undefined Visual Impairment	9	35				
Sensory Stimuli Response	39	35	18.15	4.42	0.62	2.74
Follow Directions	1,301	35	23.39	5.01	0.75	2.51
Undefined Receptive Language	0	35				
Special School	45	35	21.98	5.51	0.78	2.60
Regular School Self-contained	800	35	22.81	5.10	0.75	2.54
Regular School Resource Room	276	35	23.68	5.14	0.77	2.47
Regular School Primarily Self-contained	159	35	24.96	4.53	0.71	2.42
Regular School General Education	60	35	23.27	4.36	0.65	2.59
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through Cries	21	35				
Uses Intentional Communication	178	35	21.56	5.47	0.77	2.65
Uses Symbolic Language	1,141	35	23.58	4.92	0.74	2.49
Undefined Expressive Communication	0	35				

Table 0-26. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 4 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,137	35	11.32	4.04	0.58	2.60
Female	219	35	11.57	4.00	0.57	2.63
Male	415	35	11.42	4.16	0.61	2.59
Gender Undefined	503	35	11.13	3.94	0.57	2.59
Hispanic or Latino	211	35	11.50	3.96	0.57	2.59
American Indian or Alaska Native	15	35				
Asian	12	35				
Black or African American	165	35	11.03	4.04	0.60	2.56
Native Hawaiian or Pacific Islander	8	35				
White (non-Hispanic)	333	35	11.65	4.17	0.61	2.62
Two or More Races (non-Hispanic)	26	35	9.96	4.46	0.69	2.47
No Primary race/Ethnicity Undefined	367	35	11.13	3.95	0.56	2.61
Currently receiving LEP services	32	35	12.16	3.56	0.42	2.70
Not receiving LEP services	477	35	11.40	4.19	0.62	2.60
LEP: All Other Students	628	35	11.22	3.94	0.57	2.60
Economically Disadvantaged Students	245	35	11.42	4.33	0.64	2.59
Non-economically Disadvantaged Students	264	35	11.47	3.99	0.57	2.61
SES: All Other Students	628	35	11.22	3.94	0.57	2.60
Migrant	0	35				
Non-migrant	501	35	11.45	4.12	0.60	2.60
Undefined Migrant Status	636	35	11.22	3.97	0.57	2.60
Augmentative Communication	287	35	10.62	4.12	0.61	2.57
No Augmentative Communication	840	35	11.57	3.97	0.57	2.61
Undefined Augmentative Communications	10	35				
Hearing Loss	34	35	9.18	4.98	0.76	2.44
Within Normal Limits	1,099	35	11.37	3.99	0.57	2.61
Undefined Hearing Loss	4	35				
Visual Impairment	61	35	9.48	4.41	0.68	2.49
Within Normal Limits	1,067	35	11.41	3.99	0.57	2.61
Undefined Visual Impairment	9	35				
Sensory Stimuli Response	136	35	8.42	4.66	0.74	2.37
Follow Directions	1,000	35	11.71	3.77	0.52	2.63

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	1	35				
Special School	118	35	9.77	4.43	0.68	2.51
Regular School Self-contained	813	35	11.30	3.98	0.57	2.60
Regular School Resource Room	130	35	11.79	3.71	0.50	2.63
Regular School Primarily Self-contained	47	35	13.43	3.63	0.47	2.64
Regular School General Education	28	35	12.39	3.64	0.44	2.72
Undefined Classroom Setting	1	35				
Student Communicates Primarily Through						
Cries	115	35	8.17	5.01	0.78	2.34
Uses Intentional Communication	351	35	11.13	4.06	0.59	2.61
Uses Symbolic Language	670	35	11.95	3.54	0.45	2.63
Undefined Expressive Communication	1	35				

Table O-27. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 4 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,414	35	15.26	3.42	0.34	2.79
Female	302	35	15.41	3.39	0.32	2.79
Male	583	35	15.47	3.42	0.34	2.78
Gender Undefined	529	35	14.95	3.42	0.33	2.79
Hispanic or Latino	253	35	15.40	3.32	0.29	2.79
American Indian or Alaska Native	12	35				
Asian	17	35				
Black or African American	203	35	14.90	3.30	0.29	2.79
Native Hawaiian or Pacific Islander	5	35				
White (non-Hispanic)	512	35	15.59	3.46	0.36	2.77
Two or More Races (non-Hispanic)	23	35				
No Primary race/Ethnicity Undefined	389	35	14.92	3.50	0.36	2.79
Currently receiving LEP services	52	35	15.87	3.28	0.26	2.83

Description	Number	Raw Score									

Table O-28. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 4 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,139	35	21.02	4.71	0.69	2.63
Female	279	35	20.99	4.86	0.71	2.61
Male	566	35	21.14	4.77	0.70	2.62
Gender Undefined	294	35	20.84	4.43	0.64	2.67
Hispanic or Latino	191	35	20.85	4.46	0.65	2.65
American Indian or Alaska Native	21	35				
Asian	10	35				
Black or African American	181	35	20.51	4.50	0.65	2.66
Native Hawaiian or Pacific Islander	9	35				
White (non-Hispanic)	490	35	21.28	4.85	0.71	2.60
Two or More Races (non-Hispanic)	28	35	19.54	5.46	0.78	2.58
No Primary race/Ethnicity Undefined	209	35	21.32	4.64	0.67	2.66
Currently receiving LEP services	35	35	20.46	4.95	0.71	2.66
Not receiving LEP services	650	35	21.03	4.80	0.70	2.62
LEP: All Other Students	454	35	21.06	4.57	0.66	2.65
Economically Disadvantaged Students	393	35	21.18	4.95	0.72	2.60
Non-economically Disadvantaged Students	292	35	20.76	4.60	0.67	2.64
SES: All Other Students	454	35	21.06	4.57	0.66	2.65
Migrant	1	35				
Non-migrant	677	35	21.03	4.80	0.70	2.62
Undefined Migrant Status	461	35	21.02	4.58	0.66	2.65
Augmentative Communication	86	35	20.07	4.29	0.60	2.72
No Augmentative Communication	1,040	35	21.10	4.72	0.69	2.62
Undefined Augmentative Communications	13	35				
Hearing Loss	19	35				
Within Normal Limits	1,116	35	21.02	4.71	0.69	2.63
Undefined Hearing Loss	4	35				
Visual Impairment	28	35	19.86	3.78	0.52	2.62
Within Normal Limits	1,105	35	21.06	4.72	0.69	2.63
Undefined Visual Impairment	6	35				
Sensory Stimuli Response	25	35	19.52	4.32	0.59	2.76
Follow Directions	1,113	35	21.05	4.71	0.69	2.63
						continued

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	1	35				
Special School	50	35	20.68	4.68	0.67	2.68
Regular School Self-contained	685	35	21.06	4.87	0.71	2.63
Regular School Resource Room	222	35	20.73	4.24	0.61	2.65
Regular School Primarily Self-contained	131	35	21.37	4.77	0.71	2.58
Regular School General Education	50	35	21.26	4.31	0.63	2.62
Undefined Classroom Setting	1	35				
Student Communicates Primarily Through Cries	13	35				
Uses Intentional Communication	116	35	20.08	4.31	0.60	2.72
Uses Symbolic Language	1,009	35	21.14	4.74	0.69	2.62
Undefined Expressive Communication	1	35				

Table 0-29. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 5 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,137	35	10.52	3.13	0.32	2.57
Female	197	35	10.74	3.10	0.30	2.60
Male	437	35	10.54	3.07	0.30	2.56
Gender Undefined	503	35	10.42	3.19	0.35	2.57
Hispanic or Latino	209	35	10.63	3.24	0.36	2.59
American Indian or Alaska Native	12	35				
Asian	18	35				
Black or African American	132	35	10.37	3.51	0.47	2.55
Native Hawaiian or Pacific Islander	6	35				
White (non-Hispanic)	370	35	10.73	2.96	0.25	2.57
Two or More Races (non-Hispanic)	16	35				
No Primary race/Ethnicity Undefined	374	35	10.37	3.14	0.33	2.57
Currently receiving LEP services	27	35	10.52	2.29	-0.28	2.60
Not receiving LEP services	493	35	10.50	3.11	0.32	2.57
LEP: All Other Students	617	35	10.54	3.18	0.35	2.57
Economically Disadvantaged Students	210	35	10.65	3.27	0.39	2.56
Non-economically Disadvantaged Students	310	35	10.40	2.92	0.23	2.57

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	617	35	10.54	3.18	0.35	2.57
Migrant	1	35				
Non-migrant	514	35	10.50	3.08	0.30	2.57
Undefined Migrant Status	622	35	10.54	3.18	0.34	2.57
Augmentative Communication	294	35	10.10	3.37	0.43	2.55
No Augmentative Communication	839	35	10.66	3.03	0.28	2.58
Undefined Augmentative Communications	4	35				
Hearing Loss	30	35	9.33	4.23	0.65	2.49
Within Normal Limits	1,105	35	10.56	3.09	0.31	2.57
Undefined Hearing Loss	2	35				
Visual Impairment	61	35	8.82	4.09	0.66	2.38
Within Normal Limits	1,073	35	10.63	3.04	0.28	2.58
Undefined Visual Impairment	3	35				
Sensory Stimuli Response	139	35	8.91	4.46	0.70	2.43
Follow Directions	998	35	10.75	2.83	0.16	2.59
Undefined Receptive Language	0	35				
Special School	145	35	9.66	3.70	0.53	2.53
Regular School Self-contained	792	35	10.53	3.01	0.27	2.57
Regular School Resource Room	132	35	10.86	3.01	0.27	2.58
Regular School Primarily Self-contained	46	35	11.85	2.16	-0.56	2.69
Regular School General Education	22	35				
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through Cries	109	35	8.49	4.59	0.73	2.39
Uses Intentional Communication	345	35	10.14	2.99	0.26	2.56
Uses Symbolic Language	683	35	11.04	2.74	0.10	2.60
Undefined Expressive Communication	0	35				

Table O-30. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 5 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,489	35	14.56	3.01	0.15	2.78
Female	302	35	14.72	3.07	0.18	2.78
Male	636	35	14.65	3.08	0.20	2.76
Gender Undefined	551	35	14.36	2.88	0.06	2.79
Hispanic or Latino	266	35	14.66	2.90	0.08	2.78
American Indian or Alaska Native	17	35				
Asian	29	35	14.41	3.05	0.15	2.81
Black or African American	237	35	14.57	3.00	0.14	2.79
Native Hawaiian or Pacific Islander	9	35				
White (non-Hispanic)	497	35	14.74	3.13	0.23	2.75
Two or More Races (non-Hispanic)	32	35	15.44	2.96	0.11	2.79
No Primary race/Ethnicity Undefined	402	35	14.19	2.89	0.07	2.78
Currently receiving LEP services	54	35	14.11	2.74	-0.01	2.76
Not receiving LEP services	708	35	14.71	3.11	0.21	2.76
LEP: All Other Students	727	35	14.45	2.91	0.09	2.79
Economically Disadvantaged Students	345	35	14.98	2.98	0.14	2.75
Non-economically Disadvantaged Students	417	35	14.41	3.16	0.23	2.77
SES: All Other Students	727	35	14.45	2.91	0.09	2.79
Migrant	3	35				
Non-migrant	756	35	14.68	3.09	0.20	2.76
Undefined Migrant Status	730	35	14.44	2.91	0.08	2.79
Augmentative Communication	241	35	13.48	2.62	-0.13	2.78
No Augmentative Communication	1,243	35	14.77	3.04	0.17	2.77
Undefined Augmentative Communications	5	35				
Hearing Loss	35	35	14.00	2.26	-0.56	2.82
Within Normal Limits	1,450	35	14.57	3.02	0.16	2.77
Undefined Hearing Loss	4	35				
Visual Impairment	42	35	13.62	2.60	-0.11	2.75
Within Normal Limits	1,436	35	14.59	3.02	0.16	2.77
Undefined Visual Impairment	11	35				
Sensory Stimuli Response	86	35	13.27	2.32	-0.48	2.82
Follow Directions	1,403	35	14.64	3.03	0.16	2.77

Description	Number	Raw Score					

Table 0-31. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 5 Path C

Description	Number					
	of Students		Raw Score			
		Maximum	Mean	Standard Deviation		Alphandard Error
All Students	1,140	35	21.67	4.67	0.68	2.62
Female	273	35	21.74	4.38	0.64	2.62
Male	508	35	22.04	4.72	0.69	2.61
Gender Undefined	359	35	21.09	4.75	0.69	2.64
Hispanic or Latino	194	35	21.10	4.12	0.58	2.66
American Indian or Alaska Native	19	35				
Asian	8	35				
Black or African American	167	35	21.71	5.09	0.73	2.63
Native Hawaiian or Pacific Islander	5	35				
White (non-Hispanic)	476	35	22.09	4.55	0.68	2.59
Two or More Races (non-Hispanic)	25	35	22.00	4.52	0.65	2.66
No Primary race/Ethnicity Undefined	246	35	21.26	5.03	0.73	2.63
Currently receiving LEP services	37	35	21.81	4.56	0.67	2.64
Not receiving LEP services	607	35	22.02	4.62	0.68	2.60
LEP: All Other Students	496	35	21.23	4.70	0.68	2.64
Economically Disadvantaged Students	338	35	22.07	4.74	0.70	2.58
Non-economically Disadvantaged Students	306	35	21.93	4.48	0.66	2.63

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	496	35	21.23	4.70	0.68	2.64
Migrant	1	35				
Non-migrant	639	35	22.01	4.61	0.68	2.60
Undefined Migrant Status	500	35	21.21	4.69	0.68	2.65
Augmentative Communication	60	35	19.10	4.13	0.55	2.77
No Augmentative Communication	1,072	35	21.79	4.66	0.69	2.61
Undefined Augmentative Communications	8	35				
Hearing Loss	14	35				
Within Normal Limits	1,125	35	21.69	4.67	0.69	2.62
Undefined Hearing Loss	1	35				
Visual Impairment	24	35				
Within Normal Limits	1,111	35	21.72	4.66	0.68	2.62
Undefined Visual Impairment	5	35				
Sensory Stimuli Response	21	35				
Follow Directions	1,119	35	21.72	4.66	0.68	2.62
Undefined Receptive Language	0	35				
Special School	37	35	18.46	4.60	0.65	2.72
Regular School Self-contained	678	35	21.68	4.66	0.68	2.62
Regular School Resource Room	239	35	21.70	4.78	0.70	2.60
Regular School Primarily Self-contained	131	35	21.77	4.04	0.57	2.65
Regular School General Education	55	35	23.29	4.83	0.72	2.56
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through						
Cries	15	35				
Uses Intentional Communication	113	35	20.83	4.66	0.67	2.69
Uses Symbolic Language	1,012	35	21.83	4.64	0.68	2.61
Undefined Expressive Communication	0	35				

Table 0-32. 2016-17 MSAA: Reliability: Subgroup-Mathematics Grade 6 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,441	35	13.54	3.83	0.47	2.78
Female	291	35	13.83	3.77	0.45	2.79
Male	509	35	13.55	3.79	0.46	2.78
Gender Undefined	641	35	13.41	3.88	0.49	2.77
Hispanic or Latino	268	35	13.58	3.69	0.43	2.78
American Indian or Alaska Native	25	35	12.28	5.94	0.80	2.64
Asian	16	35				
Black or African American	163	35	13.61	3.50	0.37	2.78
Native Hawaiian or Pacific Islander	12	35				
White (non-Hispanic)	436	35	13.76	3.71	0.43	2.79
Two or More Races (non-Hispanic)	22	35				
No Primary race/Ethnicity Undefined	499	35	13.39	3.91	0.50	2.78
Currently receiving LEP services	36	35	14.56	3.63	0.39	2.83
Not receiving LEP services	595	35	13.76	3.68	0.42	2.79
LEP: All Other Students	810	35	13.34	3.93	0.51	2.77
Economically Disadvantaged Students	285	35	14.04	3.74	0.45	2.78
Non-economically Disadvantaged Students	346	35	13.61	3.61	0.40	2.80
SES: All Other Students	810	35	13.34	3.93	0.51	2.77
Migrant	0	35				
Non-migrant	618	35	13.81	3.68	0.42	2.79
Undefined Migrant Status	823	35	13.35	3.93	0.50	2.77
Augmentative Communication	355	35	13.05	3.96	0.51	2.78
No Augmentative Communication	1,079	35	13.71	3.78	0.46	2.77
Undefined Augmentative Communications	7	35				
Hearing Loss	35	35	12.43	3.11	0.20	2.79
Within Normal Limits	1,398	35	13.57	3.85	0.48	2.78
Undefined Hearing Loss	8	35				
Visual Impairment	78	35	12.09	4.82	0.69	2.70
Within Normal Limits	1,357	35	13.63	3.75	0.45	2.78
Undefined Visual Impairment	6	35				
Sensory Stimuli Response	191	35	11.40	4.79	0.69	2.65
Follow Directions	1,250	35	13.87	3.55	0.38	2.79

Description	Number	Raw Score					

Table 0-33. 2016-17 MSAA: Reliability: Subgroup-Mathematics Grade 6 Path B

Description	Number						
	of Students	Raw Score				Maximum	Mean
		Standard Deviation	Alpha	Standard Error			
All Students	769	35	17.17	3.37	0.30	2.82	
Female	161	35	16.98	3.57	0.38	2.81	
Male	296	35	17.12	3.46	0.34	2.82	
Gender Undefined	312	35	17.31	3.16	0.20	2.83	
Hispanic or Latino	143	35	17.31	3.54	0.37	2.82	
American Indian or Alaska Native	9	35					
Asian	9	35					
Black or African American	96	35	16.95	3.51	0.35	2.82	
Native Hawaiian or Pacific Islander	3	35					
White (non-Hispanic)	264	35	17.15	3.52	0.36	2.81	
Two or More Races (non-Hispanic)	6	35					
No Primary race/Ethnicity Undefined	239	35	17.21	3.02	0.12	2.83	
Currently receiving LEP services	16	35					
Not receiving LEP services	328	35	17.01	3.52	0.36	2.82	
LEP: All Other Students	425	35	17.30	3.26	0.25	2.83	
Economically Disadvantaged Students	140	35	17.16	3.47	0.35	2.81	
Non-economically Disadvantaged Students	204	35	16.89	3.51	0.35	2.83	

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	425	35	17.30	3.26	0.25	2.83
Migrant	0	35				
Non-migrant	341	35	17.02	3.50	0.35	2.82
Undefined Migrant Status	428	35	17.28	3.26	0.24	2.83
Augmentative Communication	108	35	15.96	3.19	0.19	2.86
No Augmentative Communication	655	35	17.36	3.36	0.30	2.81
Undefined Augmentative Communications	6	35				
Hearing Loss	20	35				
Within Normal Limits	745	35	17.16	3.39	0.31	2.82
Undefined Hearing Loss	4	35				
Visual Impairment	28	35	17.11	3.76	0.42	2.86
Within Normal Limits	738	35	17.17	3.36	0.30	2.82
Undefined Visual Impairment	3	35				
Sensory Stimuli Response	47	35	15.47	2.68	-0.14	2.85
Follow Directions	722	35	17.28	3.38	0.31	2.81
Undefined Receptive Language	0	35				
Special School	63	35	15.46	3.13	0.18	2.83
Regular School Self-contained	529	35	17.21	3.39	0.30	2.83
Regular School Resource Room	116	35	17.69	3.32	0.30	2.77
Regular School Primarily Self-contained	44	35	17.86	2.66	-0.14	2.85
Regular School General Education	17	35				
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through Cries	34	35	15.00	3.12	0.20	2.79
Uses Intentional Communication	148	35	16.42	3.59	0.37	2.85
Uses Symbolic Language	587	35	17.48	3.25	0.26	2.80
Undefined Expressive Communication	0	35				

Table 0-34. 2016-17 MSAA: Reliability: Subgroup-Mathematics Grade 6. Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,682	35	24.43	5.10	0.77	2.42
Female	377	35	23.92	5.12	0.78	2.43
Male	747	35	25.02	5.21	0.79	2.37
Gender Undefined	558	35	23.98	4.85	0.74	2.47
Hispanic or Latino	267	35	24.29	4.83	0.75	2.44
American Indian or Alaska Native	29	35	25.34	4.94	0.78	2.33
Asian	8	35				
Black or African American	254	35	24.67	5.31	0.80	2.37
Native Hawaiian or Pacific Islander	8	35				
White (non-Hispanic)	643	35	24.80	5.21	0.79	2.38
Two or More Races (non-Hispanic)	48	35	23.60	4.70	0.71	2.51
No Primary race/Ethnicity Undefined	425	35	23.88	4.99	0.75	2.47
Currently receiving LEP services	51	35	24.65	5.49	0.81	2.41
Not receiving LEP services	892	35	24.74	5.25	0.79	2.38
LEP: All Other Students	739	35	24.04	4.86	0.74	2.46
Economically Disadvantaged Students	528	35	24.98	5.24	0.80	2.37
Non-economically Disadvantaged Students	415	35	24.42	5.28	0.79	2.41
SES: All Other Students	739	35	24.04	4.86	0.74	2.46
Migrant	3	35				
Non-migrant	939	35	24.73	5.26	0.79	2.39
Undefined Migrant Status	740	35	24.04	4.86	0.74	2.46
Augmentative Communication	101	35	22.79	5.13	0.75	2.58
No Augmentative Communication	1,574	35	24.53	5.09	0.78	2.41
Undefined Augmentative Communications	7	35				
Hearing Loss	43	35	25.56	4.71	0.75	2.34
Within Normal Limits	1,636	35	24.40	5.10	0.77	2.42
Undefined Hearing Loss	3	35				
Visual Impairment	33	35	22.67	6.08	0.84	2.47
Within Normal Limits	1,641	35	24.46	5.08	0.77	2.42
Undefined Visual Impairment	8	35				
Sensory Stimuli Response	28	35	21.71	5.23	0.74	2.65
Follow Directions	1,654	35	24.48	5.08	0.77	2.41

Description	Number	Raw Score					

Table O-35. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 7 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,091	35	12.88	3.63	0.43	2.74
Female	217	35	13.17	3.59	0.42	2.74
Male	405	35	12.95	3.69	0.45	2.74
Gender Undefined	469	35	12.70	3.58	0.41	2.75
Hispanic or Latino	192	35	12.95	3.97	0.52	2.74
American Indian or Alaska Native	15	35				
Asian	15	35				
Black or African American	152	35	13.09	3.33	0.32	2.75
Native Hawaiian or Pacific Islander	7	35				
White (non-Hispanic)	329	35	13.18	3.73	0.46	2.75
Two or More Races (non-Hispanic)	20	35				
No Primary race/Ethnicity Undefined	361	35	12.51	3.50	0.39	2.74
Currently receiving LEP services	32	35	13.13	4.25	0.61	2.66
Not receiving LEP services	482	35	13.04	3.64	0.43	2.75
LEP: All Other Students	577	35	12.74	3.58	0.41	2.75
						continued

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Economically Disadvantaged Students	236	35	13.11	3.86	0.50	2.73
Non-economically Disadvantaged Students	278	35	12.99	3.52	0.39	2.75
SES: All Other Students	577	35	12.74	3.58	0.41	2.75
Migrant	2	35				
Non-migrant	504	35	13.03	3.67	0.44	2.74
Undefined Migrant Status	585	35	12.74	3.57	0.41	2.75
Augmentative Communication	256	35	11.83	3.82	0.49	2.72
No Augmentative Communication	830	35	13.22	3.50	0.38	2.75
Undefined Augmentative Communications	5	35				
Hearing Loss	32	35	11.56	4.44	0.63	2.68
Within Normal Limits	1,051	35	12.93	3.61	0.42	2.75
Undefined Hearing Loss	8	35				
Visual Impairment	70	35	11.19	4.69	0.68	2.64
Within Normal Limits	1,013	35	13.01	3.53	0.39	2.75
Undefined Visual Impairment	8	35				
Sensory Stimuli Response	135	35	10.24	4.39	0.65	2.60
Follow Directions	955	35	13.26	3.35	0.32	2.76
Undefined Receptive Language	1	35				
Special School	165	35	11.35	4.01	0.55	2.68
Regular School Self-contained	769	35	12.99	3.53	0.39	2.75
Regular School Resource Room	97	35	13.65	3.25	0.28	2.76
Regular School Primarily Self-contained	44	35	14.55	3.09	0.21	2.75
Regular School General Education	15	35				
Undefined Classroom Setting	1	35				
Student Communicates Primarily Through Cries	124	35	10.15	4.50	0.67	2.59
Uses Intentional Communication	303	35	12.44	3.44	0.36	2.75
Uses Symbolic Language	663	35	13.60	3.24	0.28	2.76
Undefined Expressive Communication	1	35				

Table O-36. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 7 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,535	35	16.34	3.02	0.12	2.84
Female	330	35	16.65	2.94	0.07	2.83
Male	570	35	16.43	3.18	0.21	2.83
Gender Undefined	635	35	16.10	2.90	0.03	2.85
Hispanic or Latino	243	35	16.39	2.93	0.05	2.85
American Indian or Alaska Native	30	35	16.73	3.27	0.28	2.78
Asian	16	35				
Black or African American	227	35	16.49	2.88	0.02	2.84
Native Hawaiian or Pacific Islander	7	35				
White (non-Hispanic)	495	35	16.50	3.17	0.21	2.82
Two or More Races (non-Hispanic)	18	35				
No Primary race/Ethnicity Undefined	499	35	16.03	2.93	0.06	2.84
Currently receiving LEP services	30	35	17.43	2.91	0.04	2.85
Not receiving LEP services	688	35	16.55	3.08	0.16	2.83
LEP: All Other Students	817	35	16.13	2.96	0.08	2.84
Economically Disadvantaged Students	338	35	16.99	3.03	0.13	2.82
Non-economically Disadvantaged Students	380	35	16.23	3.08	0.15	2.83
SES: All Other Students	817	35	16.13	2.96	0.08	2.84
Migrant	1	35				
Non-migrant	707	35	16.59	3.09	0.16	2.83
Undefined Migrant Status	827	35	16.13	2.95	0.07	2.85
Augmentative Communication	225	35	15.23	2.59	-0.21	2.85
No Augmentative Communication	1,299	35	16.54	3.06	0.14	2.83
Undefined Augmentative Communications	11	35				
Hearing Loss	41	35	15.90	3.06	0.13	2.85
Within Normal Limits	1,487	35	16.35	3.02	0.12	2.84
Undefined Hearing Loss	7	35				
Visual Impairment	64	35	16.09	2.92	0.03	2.88
Within Normal Limits	1,462	35	16.36	3.03	0.13	2.84
Undefined Visual Impairment	9	35				
Sensory Stimuli Response	56	35	15.16	2.93	0.05	2.86
Follow Directions	1,478	35	16.39	3.02	0.12	2.84

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	1	35				
Special School	144	35	15.51	2.51	-0.31	2.87
Regular School Self-contained	1,073	35	16.26	3.00	0.10	2.84
Regular School Resource Room	187	35	17.02	3.23	0.23	2.83
Regular School Primarily Self-contained	100	35	17.07	3.19	0.25	2.76
Regular School General Education	30	35	16.80	3.17	0.20	2.84
Undefined Classroom Setting	1	35				
Student Communicates Primarily Through Cries	55	35	15.62	2.51	-0.30	2.86
Uses Intentional Communication	284	35	15.10	2.47	-0.33	2.85
Uses Symbolic Language	1,195	35	16.67	3.08	0.16	2.82
Undefined Expressive Communication	1	35				

Table O-37. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 7 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,235	34	23.71	4.90	0.76	2.42
Female	288	34	23.53	4.98	0.76	2.43
Male	553	34	23.86	4.84	0.75	2.41
Gender Undefined	394	34	23.62	4.93	0.76	2.42
Hispanic or Latino	186	34	23.49	4.83	0.75	2.41
American Indian or Alaska Native	14	34				
Asian	8	34				
Black or African American	163	34	23.28	5.08	0.77	2.44
Native Hawaiian or Pacific Islander	7	34				
White (non-Hispanic)	524	34	23.93	4.81	0.75	2.42
Two or More Races (non-Hispanic)	20	34				
No Primary race/Ethnicity Undefined	313	34	23.73	4.99	0.76	2.42
Currently receiving LEP services	35	34	23.97	4.46	0.71	2.39
Not receiving LEP services	648	34	23.93	4.84	0.75	2.41
LEP: All Other Students	552	34	23.43	5.00	0.76	2.43
Economically Disadvantaged Students	389	34	23.84	4.81	0.75	2.41
Non-economically Disadvantaged Students	294	34	24.06	4.82	0.75	2.41

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	552	34	23.43	5.00	0.76	2.43
Migrant	0	34				
Non-migrant	680	34	23.92	4.81	0.75	2.41
Undefined Migrant Status	555	34	23.44	5.01	0.76	2.43
Augmentative Communication	58	34	21.05	4.74	0.70	2.62
No Augmentative Communication	1,171	34	23.85	4.87	0.76	2.41
Undefined Augmentative Communications	6	34				
Hearing Loss	15	34				
Within Normal Limits	1,215	34	23.71	4.89	0.75	2.42
Undefined Hearing Loss	5	34				
Visual Impairment	21	34				
Within Normal Limits	1,198	34	23.71	4.89	0.75	2.42
Undefined Visual Impairment	16	34				
Sensory Stimuli Response	14	34				
Follow Directions	1,219	34	23.75	4.89	0.76	2.42
Undefined Receptive Language	2	34				
Special School	47	34	21.40	4.59	0.68	2.59
Regular School Self-contained	759	34	23.62	4.90	0.75	2.43
Regular School Resource Room	237	34	23.98	5.01	0.77	2.39
Regular School Primarily Self-contained	126	34	24.31	4.63	0.74	2.36
Regular School General Education	64	34	24.30	4.81	0.76	2.36
Undefined Classroom Setting	2	34				
Student Communicates Primarily Through						
Cries	9	34				
Uses Intentional Communication	117	34	21.87	4.80	0.71	2.56
Uses Symbolic Language	1,107	34	23.94	4.87	0.76	2.40
Undefined Expressive Communication	2	34				

Table O-38. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 8 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,355	35	11.86	3.85	0.52	2.66
Female	270	35	11.84	3.86	0.53	2.65
Male	464	35	12.01	3.86	0.53	2.66
Gender Undefined	621	35	11.77	3.84	0.52	2.65
Hispanic or Latino	243	35	12.12	3.55	0.43	2.69
American Indian or Alaska Native	15	35				
Asian	15	35				
Black or African American	175	35	12.05	3.48	0.40	2.69
Native Hawaiian or Pacific Islander	8	35				
White (non-Hispanic)	416	35	11.88	4.14	0.60	2.63
Two or More Races (non-Hispanic)	24	35				
No Primary race/Ethnicity Undefined	459	35	11.64	3.88	0.54	2.64
Currently receiving LEP services	22	35				
Not receiving LEP services	586	35	11.96	3.89	0.54	2.65
LEP: All Other Students	747	35	11.80	3.84	0.52	2.66
Economically Disadvantaged Students	236	35	12.08	3.74	0.49	2.67
Non-economically Disadvantaged Students	372	35	11.86	3.94	0.55	2.64
SES: All Other Students	747	35	11.80	3.84	0.52	2.66
Migrant	0	35				
Non-migrant	597	35	11.94	3.87	0.53	2.65
Undefined Migrant Status	758	35	11.80	3.83	0.52	2.66
Augmentative Communication	291	35	10.45	4.12	0.61	2.58
No Augmentative Communication	1,052	35	12.27	3.69	0.48	2.67
Undefined Augmentative Communications	12	35				
Hearing Loss	42	35	10.64	5.05	0.75	2.52
Within Normal Limits	1,304	35	11.91	3.79	0.51	2.66
Undefined Hearing Loss	9	35				
Visual Impairment	71	35	11.00	4.31	0.63	2.63
Within Normal Limits	1,277	35	11.91	3.83	0.52	2.66
Undefined Visual Impairment	7	35				
Sensory Stimuli Response	140	35	9.67	4.94	0.74	2.50
Follow Directions	1,214	35	12.12	3.62	0.46	2.67

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	1	35				
Special School	191	35	10.39	4.19	0.62	2.58
Regular School Self-contained	927	35	11.93	3.76	0.50	2.66
Regular School Resource Room	158	35	12.84	3.73	0.49	2.67
Regular School Primarily Self-contained	57	35	12.96	3.39	0.37	2.69
Regular School General Education	21	35				
Undefined Classroom Setting	1	35				
Student Communicates Primarily Through Cries	138	35	9.27	4.75	0.73	2.47
Uses Intentional Communication	354	35	10.97	3.68	0.49	2.63
Uses Symbolic Language	862	35	12.65	3.48	0.41	2.68
Undefined Expressive Communication	1	35				

Table 0-39. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 8 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	920	35	16.08	3.12	0.15	2.87
Female	191	35	16.12	3.04	0.09	2.89
Male	356	35	15.97	3.31	0.25	2.86
Gender Undefined	373	35	16.16	2.97	0.06	2.88
Hispanic or Latino	154	35	15.94	3.08	0.13	2.87
American Indian or Alaska Native	15	35				
Asian	9	35				
Black or African American	138	35	15.96	3.09	0.13	2.88
Native Hawaiian or Pacific Islander	10	35				
White (non-Hispanic)	305	35	16.15	3.26	0.23	2.87
Two or More Races (non-Hispanic)	17	35				
No Primary race/Ethnicity Undefined	272	35	16.22	2.98	0.07	2.88
Currently receiving LEP services	16	35				
Not receiving LEP services	447	35	16.10	3.19	0.19	2.87
LEP: All Other Students	457	35	16.08	3.04	0.10	2.88
Economically Disadvantaged Students	182	35	16.33	3.34	0.27	2.86
Non-economically Disadvantaged Students	281	35	15.90	3.10	0.13	2.88

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	457	35	16.08	3.04	0.10	2.88
Migrant	2	35				
Non-migrant	454	35	16.12	3.19	0.19	2.87
Undefined Migrant Status	464	35	16.03	3.05	0.11	2.87
Augmentative Communication	116	35	15.62	2.82	-0.04	2.88
No Augmentative Communication	797	35	16.13	3.16	0.18	2.87
Undefined Augmentative Communications	7	35				
Hearing Loss	24	35				
Within Normal Limits	889	35	16.10	3.11	0.15	2.87
Undefined Hearing Loss	7	35				
Visual Impairment	38	35	15.55	2.53	-0.28	2.87
Within Normal Limits	877	35	16.10	3.14	0.17	2.87
Undefined Visual Impairment	5	35				
Sensory Stimuli Response	39	35	14.95	2.89	0.02	2.87
Follow Directions	880	35	16.12	3.12	0.15	2.87
Undefined Receptive Language	1	35				
Special School	80	35	15.70	3.07	0.12	2.88
Regular School Self-contained	619	35	15.99	3.10	0.14	2.87
Regular School Resource Room	150	35	16.43	3.10	0.15	2.86
Regular School Primarily Self-contained	57	35	16.32	3.36	0.27	2.88
Regular School General Education	13	35				
Undefined Classroom Setting	1	35				
Student Communicates Primarily Through Cries	39	35	15.79	2.80	-0.07	2.90
Uses Intentional Communication	181	35	15.32	2.86	0.00	2.86
Uses Symbolic Language	699	35	16.28	3.17	0.18	2.87
Undefined Expressive Communication	1	35				

Table O-40. 2016-17 MSAA: Reliability: Subgroup- Mathematics Grade 8 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,830	35	22.52	5.11	0.74	2.61
Female	420	35	22.57	5.01	0.73	2.60
Male	792	35	22.78	5.20	0.75	2.59
Gender Undefined	618	35	22.14	5.04	0.73	2.63
Hispanic or Latino	282	35	22.27	4.95	0.72	2.63
American Indian or Alaska Native	27	35	21.56	4.45	0.63	2.69
Asian	21	35				
Black or African American	274	35	22.76	5.04	0.73	2.60
Native Hawaiian or Pacific Islander	9	35				
White (non-Hispanic)	716	35	22.82	5.27	0.76	2.58
Two or More Races (non-Hispanic)	34	35	22.59	4.70	0.69	2.62
No Primary race/Ethnicity Undefined	467	35	22.18	5.02	0.73	2.63
Currently receiving LEP services	48	35	22.63	4.17	0.58	2.69
Not receiving LEP services	952	35	22.84	5.23	0.76	2.58
LEP: All Other Students	830	35	22.14	5.00	0.72	2.63
Economically Disadvantaged Students	517	35	23.11	4.98	0.73	2.57
Non-economically Disadvantaged Students	483	35	22.52	5.37	0.77	2.60
SES: All Other Students	830	35	22.14	5.00	0.72	2.63
Migrant	1	35				
Non-migrant	996	35	22.83	5.18	0.75	2.58
Undefined Migrant Status	833	35	22.13	5.00	0.72	2.63
Augmentative Communication	138	35	19.89	4.37	0.63	2.66
No Augmentative Communication	1,680	35	22.75	5.10	0.74	2.60
Undefined Augmentative Communications	12	35				
Hearing Loss	40	35	21.63	5.14	0.74	2.63
Within Normal Limits	1,780	35	22.55	5.11	0.74	2.60
Undefined Hearing Loss	10	35				
Visual Impairment	58	35	21.22	4.42	0.64	2.64
Within Normal Limits	1,762	35	22.57	5.13	0.74	2.60
Undefined Visual Impairment	10	35				
Sensory Stimuli Response	45	35	18.91	3.18	0.28	2.70
Follow Directions	1,785	35	22.61	5.12	0.74	2.60

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	0	35				
Special School	100	35	19.91	4.23	0.60	2.66
Regular School Self-contained	1,141	35	22.23	5.05	0.73	2.62
Regular School Resource Room	377	35	23.42	5.13	0.75	2.56
Regular School Primarily Self-contained	152	35	23.64	5.07	0.75	2.56
Regular School General Education	60	35	23.75	5.39	0.79	2.49
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through						
Cries	35	35	18.31	3.11	0.32	2.56
Uses Intentional Communication	204	35	20.74	4.88	0.70	2.67
Uses Symbolic Language	1,591	35	22.84	5.09	0.74	2.59
Undefined Expressive Communication	0	35				

Table 0-41. 2016-17 MSAA: Reliability: Subgroup-Mathematics Grade 11 Path A

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	882	35	11.22	3.86	0.53	2.64
Female	152	35	11.28	3.78	0.51	2.64
Male	313	35	10.85	4.05	0.58	2.61
Gender Undefined	417	35	11.48	3.72	0.49	2.65
Hispanic or Latino	134	35	11.11	4.08	0.59	2.63
American Indian or Alaska Native	16	35				
Asian	10	35				
Black or African American	128	35	10.43	4.84	0.72	2.56
Native Hawaiian or Pacific Islander	14	35				
White (non-Hispanic)	230	35	11.52	2.98	0.20	2.67
Two or More Races (non-Hispanic)	10	35				
No Primary race/Ethnicity Undefined	340	35	11.63	3.57	0.44	2.67
Currently receiving LEP services	16	35				
Not receiving LEP services	321	35	11.14	3.88	0.54	2.63
LEP: All Other Students	545	35	11.31	3.78	0.51	2.64

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Economically Disadvantaged Students	159	35	10.92	4.24	0.62	2.61
Non-economically Disadvantaged Students	178	35	11.23	3.73	0.50	2.64
SES: All Other Students	545	35	11.31	3.78	0.51	2.64
Migrant	0	35				
Non-migrant	324	35	11.23	3.82	0.52	2.64
Undefined Migrant Status	558	35	11.22	3.88	0.54	2.64
Augmentative Communication	196	35	10.59	3.70	0.50	2.61
No Augmentative Communication	679	35	11.39	3.89	0.54	2.64
Undefined Augmentative Communications	7	35				
Hearing Loss	43	35	10.84	4.04	0.58	2.62
Within Normal Limits	836	35	11.24	3.85	0.53	2.64
Undefined Hearing Loss	3	35				
Visual Impairment	40	35	10.15	4.60	0.70	2.52
Within Normal Limits	839	35	11.28	3.82	0.52	2.64
Undefined Visual Impairment	3	35				
Sensory Stimuli Response	98	35	8.57	4.85	0.75	2.40
Follow Directions	784	35	11.55	3.58	0.45	2.66
Undefined Receptive Language	0	35				
Special School	190	35	10.59	3.51	0.44	2.62
Regular School Self-contained	557	35	11.34	3.95	0.55	2.64
Regular School Resource Room	99	35	11.25	3.73	0.50	2.64
Regular School Primarily Self-contained	27	35	12.04	4.29	0.63	2.59
Regular School General Education	9	35				
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through Cries	92	35	8.23	5.40	0.81	2.33
Uses Intentional Communication	238	35	10.52	3.73	0.52	2.59
Uses Symbolic Language	552	35	12.03	3.26	0.32	2.70
Undefined Expressive Communication	0	35				

Table 0-42. 2016-17 MSAA: Reliability: Subgroup-Mathematics Grade 11 Path B

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,149	35	14.64	2.74	-0.08	2.85
Female	216	35	14.61	3.00	0.10	2.85
Male	398	35	14.64	2.74	-0.08	2.84
Gender Undefined	535	35	14.66	2.63	-0.18	2.86
Hispanic or Latino	159	35	14.15	2.56	-0.23	2.85
American Indian or Alaska Native	11	35				
Asian	12	35				
Black or African American	148	35	14.60	2.61	-0.20	2.86
Native Hawaiian or Pacific Islander	5	35				
White (non-Hispanic)	370	35	14.70	2.86	0.02	2.83
Two or More Races (non-Hispanic)	6	35				
No Primary race/Ethnicity Undefined	438	35	14.80	2.70	-0.13	2.86
Currently receiving LEP services	19	35				
Not receiving LEP services	458	35	14.60	2.77	-0.05	2.84
LEP: All Other Students	672	35	14.67	2.73	-0.09	2.85
Economically Disadvantaged Students	215	35	14.89	2.68	-0.11	2.83
Non-economically Disadvantaged Students	262	35	14.37	2.79	-0.04	2.84
SES: All Other Students	672	35	14.67	2.73	-0.09	2.85
Migrant	1	35				
Non-migrant	472	35	14.61	2.74	-0.08	2.84
Undefined Migrant Status	676	35	14.67	2.74	-0.08	2.85
Augmentative Communication	167	35	14.19	2.28	-0.57	2.86
No Augmentative Communication	978	35	14.73	2.80	-0.03	2.84
Undefined Augmentative Communications	4	35				
Hearing Loss	32	35	14.75	2.17	-0.74	2.86
Within Normal Limits	1,114	35	14.64	2.76	-0.07	2.85
Undefined Hearing Loss	3	35				
Visual Impairment	43	35	14.53	2.48	-0.33	2.86
Within Normal Limits	1,101	35	14.65	2.75	-0.07	2.85
Undefined Visual Impairment	5	35				
Sensory Stimuli Response	52	35	12.90	2.12	-0.73	2.79
Follow Directions	1,097	35	14.73	2.74	-0.08	2.85

Description		Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
Undefined Receptive Language	0	35				
Special School	165	35	14.08	2.53	-0.25	2.83
Regular School Self-contained	758	35	14.65	2.72	-0.10	2.85
Regular School Resource Room	153	35	14.74	2.59	-0.19	2.82
Regular School Primarily Self-contained	62	35	15.45	3.11	0.16	2.86
Regular School General Education	11	35				
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through Cries	49	35	13.33	2.57	-0.21	2.82
Uses Intentional Communication	197	35	14.13	2.44	-0.36	2.84
Uses Symbolic Language	903	35	14.83	2.78	-0.05	2.85
Undefined Expressive Communication	0	35				

Table 0-43. 2016-17 MSAA: Reliability: Subgroup-Mathematics Grade 11 Path C

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
All Students	1,262	35	22.40	5.57	0.79	2.58
Female	247	35	22.33	5.53	0.78	2.57
Male	507	35	23.02	5.61	0.79	2.55
Gender Undefined	508	35	21.82	5.49	0.77	2.61
Hispanic or Latino	154	35	22.03	5.75	0.79	2.60
American Indian or Alaska Native	11	35				
Asian	3	35				
Black or African American	170	35	23.44	5.44	0.78	2.55
Native Hawaiian or Pacific Islander	5	35				
White (non-Hispanic)	472	35	22.54	5.61	0.79	2.55
Two or More Races (non-Hispanic)	13	35				
No Primary race/Ethnicity Undefined	434	35	21.91	5.42	0.77	2.61
Currently receiving LEP services	22	35				
Not receiving LEP services	589	35	22.76	5.55	0.79	2.55
LEP: All Other Students	651	35	22.03	5.58	0.78	2.60
Economically Disadvantaged Students	347	35	23.34	5.53	0.79	2.53
Non-economically Disadvantaged Students	264	35	22.08	5.48	0.78	2.58

Description	Number of Students	Raw Score			Alpha	Standard Error
		Maximum	Mean	Standard Deviation		
SES: All Other Students	651	35	22.03	5.58	0.78	2.60
Migrant	3	35				
Non-migrant	606	35	22.81	5.54	0.79	2.55
Undefined Migrant Status	653	35	22.01	5.58	0.78	2.60
Augmentative Communication	76	35	19.76	4.44	0.62	2.74
No Augmentative Communication	1,181	35	22.55	5.59	0.79	2.57
Undefined Augmentative Communications	5	35				
Hearing Loss	31	35	20.58	5.08	0.72	2.71
Within Normal Limits	1,229	35	22.44	5.56	0.79	2.58
Undefined Hearing Loss	2	35				
Visual Impairment	29	35	20.45	5.53	0.76	2.68
Within Normal Limits	1,224	35	22.45	5.57	0.79	2.57
Undefined Visual Impairment	9	35				
Sensory Stimuli Response	15	35				
Follow Directions	1,247	35	22.44	5.58	0.79	2.58
Undefined Receptive Language	0	35				
Special School	94	35	19.81	5.52	0.76	2.71
Regular School Self-contained	769	35	22.44	5.53	0.78	2.57
Regular School Resource Room	235	35	23.16	5.74	0.80	2.55
Regular School Primarily Self-contained	140	35	22.86	5.17	0.76	2.55
Regular School General Education	24	35				
Undefined Classroom Setting	0	35				
Student Communicates Primarily Through						
Cries	8	35				
Uses Intentional Communication	89	35	19.53	4.89	0.68	2.75
Uses Symbolic Language	1,165	35	22.63	5.57	0.79	2.56
Undefined Expressive Communication	0	35				

APPENDIX P—DECISION ACCURACY AND CONSISTENCY RESULTS

Table P-1. 2016-17 MSAA: Summary of Decision Accuracy (and Consistency) Results by Content Area and Grade-Overall and Conditional on Performance Level - Path A

Content Area	Grade	Overall	Kappa	Conditional on Level		
				Level 1	Level 2	Level 3/4
	3	$0.82(0.76)$	0.27	$0.88(0.87)$	$0.44(0.30)$	$0.65(0.29)$
	4	$0.80(0.73)$	0.28	$0.87(0.86)$	$0.44(0.31)$	$0.65(0.31)$
ELA	5	$0.77(0.69)$	0.29	$0.84(0.82)$	$0.54(0.41)$	$0.64(0.29)$
	6	$0.81(0.73)$	0.38	$0.86(0.83)$	$0.65(0.51)$	$0.66(0.31)$
	7	$0.84(0.78)$	0.27	$0.89(0.89)$	$0.35(0.24)$	$0.66(0.33)$
	8	$0.75(0.66)$	0.34	$0.81(0.76)$	$0.66(0.55)$	$0.65(0.30)$
	11	$0.74(0.67)$	0.25	$0.83(0.82)$	$0.30(0.23)$	$0.66(0.37)$
	3	$0.70(0.62)$	0.23	$0.80(0.77)$	$0.26(0.20)$	$0.65(0.39)$
	4	$0.75(0.67)$	0.29	$0.84(0.82)$	$0.39(0.29)$	$0.67(0.40)$
Mathematics	5	$0.59(0.50)$	0.14	$0.70(0.61)$	$0.48(0.41)$	$0.59(0.25)$
	6	$0.72(0.64)$	0.22	$0.81(0.78)$	$0.41(0.31)$	$0.63(0.30)$
	7	$0.61(0.51)$	0.20	$0.73(0.63)$	$0.49(0.42)$	$0.64(0.35)$
	8	$0.72(0.64)$	0.25	$0.82(0.79)$	$0.39(0.30)$	$0.66(0.37)$
	11	$0.68(0.60)$	0.26	$0.80(0.76)$	$0.36(0.28)$	$0.67(0.42)$

Note: Due to the small sample size, students in Levels 3 and 4 were collapsed for purposes of the decision accuracy and consistency analysis.

Table P-2. 2016-17 MSAA: Summary of Decision Accuracy (and Consistency) Results by Content Area and Grade-Overall and Conditional on Performance Level - Path B

Content Area	Grade	Overall	Kappa	Conditional on Level	
				Level 1/2	Level 3/4
ELA	3	0.74 (0.65)	0.18	0.76 (0.75)	0.63 (0.43)
	4	0.67 (0.58)	0.16	0.66 (0.56)	0.67 (0.60)
	5	0.66 (0.58)	0.13	0.68 (0.63)	0.62 (0.50)
	6	0.69 (0.60)	0.18	0.71 (0.65)	0.66 (0.54)
	7	0.67 (0.58)	0.16	0.66 (0.55)	0.68 (0.61)
	8	0.65 (0.57)	0.12	0.67 (0.62)	0.62 (0.51)
	11	0.70 (0.61)	0.21	0.69 (0.58)	0.70 (0.63)
Mathematics	3	0.64 (0.56)	0.09	0.60 (0.47)	0.66 (0.62)
					con

	4	$0.70(0.61)$	0.22	$0.71(0.64)$	$0.68(0.58)$
	5	$0.64(0.55)$	0.09	$0.61(0.49)$	$0.65(0.60)$
Mathematics	6	$0.73(0.64)$	0.19	$0.75(0.73)$	$0.64(0.46)$
	7	$0.61(0.54)$	0.07	$0.60(0.50)$	$0.62(0.57)$
	8	$0.63(0.55)$	0.10	$0.63(0.56)$	$0.62(0.54)$
	11	$0.96(0.94)$	0.89	$0.96(0.95)$	$0.96(0.94)$

Note: Due to the small sample size, students in Levels 1 and 2, and Levels 3 and 4 were collapsed for purposes of the decision accuracy and consistency analysis.

Table P-3. 2016-17 MSAA: Summary of Decision Accuracy (and Consistency) Results by Content Area and Grade-Overall and Conditional on Performance Level - Path C

Content Area						
	Grade	Overall	Kappa	Conditional on Level		
				Level 3	Level 4	
	3	$0.76(0.69)$		$0.71(0.47)$	$0.46(0.36)$	$0.86(0.83)$
	4	$0.71(0.61)$	0.35	$0.70(0.46)$	$0.64(0.56)$	$0.79(0.70)$
	5	$0.70(0.60)$	0.32	$0.68(0.39)$	$0.60(0.51)$	$0.79(0.72)$
	6	$0.68(0.59)$	0.32	$0.70(0.47)$	$0.52(0.43)$	$0.80(0.73)$
	7	$0.71(0.61)$	0.31	$0.67(0.37)$	$0.58(0.49)$	$0.80(0.73)$
	8	$0.71(0.63)$	0.29	$0.68(0.41)$	$0.43(0.34)$	$0.82(0.78)$
	11	$0.70(0.60)$	0.33	$0.69(0.42)$	$0.61(0.53)$	$0.79(0.70)$
	3	$0.77(0.69)$	0.44	$0.74(0.53)$	$0.62(0.52)$	$0.86(0.81)$
	4	$0.74(0.66)$	0.37	$0.72(0.49)$	$0.52(0.42)$	$0.84(0.80)$
	5	$0.75(0.67)$	0.38	$0.70(0.44)$	$0.62(0.51)$	$0.83(0.78)$
	6	$0.77(0.70)$	0.44	$0.77(0.60)$	$0.46(0.36)$	$0.87(0.84)$
	7	$0.79(0.72)$	0.45	$0.74(0.53)$	$0.59(0.48)$	$0.88(0.85)$
	8	$0.76(0.68)$	0.41	$0.75(0.56)$	$0.47(0.37)$	$0.86(0.82)$
	11	$0.80(0.73)$	0.46	$0.77(0.59)$	$0.51(0.40)$	$0.89(0.86)$

Note: Due to the small sample size, students in Levels 1 and 2 were collapsed for purposes of the decision accuracy and consistency analysis.

Table P-4. 2016-17 MSAA: Summary of Decision Accuracy (and Consistency) Results by Content Area and Grade-Conditional on Cutpoint -

Path A

Content Area	Grade	Level 1/Level 2			Level 2/Level 3			Level 3/Level 4		
		Accuracy (Consistency)	False		Accuracy (Consistency)	False		Accuracy (Consistency)	False	
			Positive	Negative		Positive	Negative		Positive	Negative
ELA	3	0.85 (0.79)	0.11	0.04	0.96 (0.93)	0.04	0.01	*	*	*
	4	0.84 (0.78)	0.11	0.05	0.95 (0.92)	0.05	0.01	*	*	*
	5	0.81 (0.74)	0.12	0.07	0.96 (0.93)	0.04	0.01	*	*	*
	6	0.83 (0.77)	0.10	0.07	0.97 (0.96)	0.02	0.00	*	*	*
	7	0.87 (0.82)	0.09	0.03	0.95 (0.92)	0.05	0.01	*	*	*
	8	0.79 (0.71)	0.12	0.09	0.96 (0.94)	0.03	0.00	*	*	*
	11	0.81 (0.73)	0.13	0.06	0.89 (0.84)	0.09	0.02	*	*	*
Mathematics	3	0.77 (0.69)	0.15	0.08	0.86 (0.79)	0.11	0.03	*	*	*
	4	0.81 (0.74)	0.12	0.07	0.91 (0.87)	0.07	0.02	*	*	*
	5	0.69 (0.60)	0.16	0.15	0.88 (0.82)	0.11	0.01	*	*	*
	6	0.78 (0.70)	0.15	0.07	0.91 (0.87)	0.08	0.01	*	*	*
	7	0.73 (0.64)	0.13	0.14	0.87 (0.80)	0.11	0.02	*	*	*
	8	0.79 (0.71)	0.13	0.08	0.90 (0.85)	0.08	0.02	*	*	*
	11	0.78 (0.70)	0.13	0.09	0.87 (0.81)	0.10	0.03	*	*	*

Note: Due to the small sample size, students in Levels 3 and 4 were collapsed for purposes of the decision accuracy and consistency analysis.
Table P-5. 2016-17 MSAA: Summary of Decision Accuracy (and Consistency) Results
by Content Area and Grade-Conditional on Cutpoint - Path_B

Content Area	Grade	Level 1/Level 2			Level 2/Level 3			Level 3/Level 4		
		Accuracy (Consistency)	False		Accuracy (Consistency)	False		Accuracy (Consistency)	False	
			Positive	Negative		Positive	Negative		Positive	Negative
	3	*	*	*	0.74 (0.65)	0.19	0.07	*	*	*
	4	*	*	*	0.67 (0.58)	0.16	0.18	*	*	*
	5	*	*	*	0.66 (0.58)	0.21	0.12	*	*	*
ELA	6	*	*	*	0.69 (0.60)	0.18	0.13	*	*	*
	7	*	*	*	0.67 (0.58)	0.14	0.19	*	*	*
	8	*	*	*	0.65 (0.57)	0.21	0.14	*	*	*
	11	*	*	*	0.70 (0.61)	0.14	0.16	*	*	*

Content Area	Grade	Level 1/Level 2			Level 2/Level 3			Level 3/Level 4		
		Accuracy (Consistency)	False		Accuracy (Consistency)	False		Accuracy (Consistency)	False	
			Positive	Negative		Positive	Negative		Positive	Negative
Mathematics	3	*	*	*	0.64 (0.56)	0.11	0.24	*	*	*
	4	*	*	*	0.70 (0.61)	0.16	0.14	*	*	*
	5	*	*	*	0.64 (0.55)	0.13	0.23	*	*	*
	6	*	*	*	0.73 (0.64)	0.19	0.08	*	*	*
	7	*	*	*	0.61 (0.54)	0.15	0.23	*	*	*
	8	*	*	*	0.63 (0.55)	0.19	0.18	*	*	*
	11	*	*	*	0.96 (0.94)	0.02	0.02	*	*	*

Note: Due to the small sample size, students in Levels 1 and 2, and Levels 3 and 4 were collapsed for purposes of the decision accuracy and consistency analysis.

Table P-6. 2016-17 MSAA: Summary of Decision Accuracy (and Consistency) Results by Content Area and Grade-Conditional on Cutpoint - Path_C

Content Area	Grade	Level 1/Level 2			Level 2/Level 3			Level 3/Level 4		
		Accuracy (Consistency)	False		Accuracy (Consistency)	False		Accuracy (Consistency)	False	
			Positive	Negative		Positive	Negative		Positive	Negative
ELA	3	*	*	*	0.92 (0.88)	0.02	0.06	0.83 (0.77)	0.07	0.10
	4	*	*	*	0.90 (0.86)	0.02	0.07	0.80 (0.73)	0.11	0.09
	5	*	*	*	0.91 (0.87)	0.02	0.07	0.78 (0.71)	0.11	0.11
	6	*	*	*	0.88 (0.83)	0.03	0.09	0.79 (0.72)	0.10	0.11
	7	*	*	*	0.92 (0.88)	0.01	0.06	0.78 (0.70)	0.10	0.12
	8	*	*	*	0.90 (0.85)	0.02	0.08	0.80 (0.72)	0.08	0.12
	11	*	*	*	0.91 (0.87)	0.02	0.07	0.79 (0.71)	0.11	0.10
Mathematics	3	*	*	*	0.93 (0.90)	0.02	0.05	0.84 (0.78)	0.08	0.08
	4	*	*	*	0.91 (0.87)	0.02	0.07	0.82 (0.75)	0.08	0.10
	5	*	*	*	0.93 (0.90)	0.01	0.05	0.82 (0.75)	0.08	0.10
	6	*	*	*	0.91 (0.87)	0.03	0.06	0.85 (0.80)	0.07	0.08
	7	*	*	*	0.94 (0.91)	0.02	0.05	0.85 (0.80)	0.06	0.08
	8	*	*	*	0.90 (0.86)	0.03	0.07	0.84 (0.78)	0.07	0.09
	11	*	*	*	0.92 (0.89)	0.03	0.05	0.87 (0.81)	0.06	0.08

Note: Due to the small sample size, students in Levels 1 and 2 were collapsed for purposes of the decision accuracy and consistency analysis.

APPENDIX Q—TECHNICAL ADVISORY COMMITTEE MEMBERS

Table Q-1. 2016-17 MSAA: Technical Advisory Committee Members

Name	Organization	Expertise
Derek Briggs	University of Colorado	Assessment / Growth / Psychometrics
Joseph Martineau	The National Center for the Improvement of Educational Assessment	Psychometrics / Computer Adaptive Rachel Quenemoen
National Center on Educational Outcomes	Students With Significant Cognitive	
Michael Russell	Boston College	Disabilities / NCSC Awareness
Martha Thurlow	University of Minnesota/NCEO	Technology / Accessibility

[^0]: ${ }^{1}$ M SAA only had one operational form in 2015-16, so the DETECT values are repeated three times in the table.
 ${ }^{2}$ DETECT values are not reported for 2016-17 grades 6, 7, and 8 ELA Form 3 because the DIM TEST null hypothesis was retained.

[^1]: ${ }^{1}$ No Observable Mode of Communication indicates that the students' test was closed because they had no visible means of communication.

[^2]: * Only available through a state-supplied status code.
 ${ }^{1}$ All Scores: State Student Results Files include Item Responses, Raw Scores, Scaled Scores, and Performance Levels, as applicable by status.

