

K-12 Crosscutting Concepts* Progression Matrix of Elements

For use with Arizona Science Standards

1. Patterns – Observed patterns in nature guide organization and classification and prompt questions about relationships and causes underlying them.			
K-2 Crosscutting Statements	3-5 Crosscutting Statements	6-8 Crosscutting Statements	9-12 Crosscutting Statements
 Patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence. 	 Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena and designed products. Patterns of change can be used to make predictions. Patterns can be used as evidence to support an explanation. 	 Macroscopic patterns are related to the nature of microscopic and atomic-level structure. Patterns in rates of change and other numerical relationships can provide information about natural and human designed systems. Patterns can be used to identify cause and effect relationships. Graphs, charts, and images can be used to identify patterns in data. 	 Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Classifications or explanations used at one scale may fail or need revision when information from smaller or larger scales is introduced; thus requiring improved investigations and experiments. Patterns of performance of designed systems can be analyzed and interpreted to reengineer and improve the system. Mathematical representations are needed to identify some patterns. Empirical evidence is needed to identify patterns.

2. Cause and Effect: Mechanism and Prediction – Events have causes, sometimes simple, sometimes multifaceted. Deciphering causal relationships, and the mechanisms by which they are mediated, is a major activity of science and engineering.

K-2 Crosscutting Statements	3-5 Crosscutting Statements	6-8 Crosscutting Statements	9-12 Crosscutting Statements
 Events have causes that generate observable patterns. Simple tests can be designed to gather evidence to support or refute student ideas about causes. 	 Cause and effect relationships are routinely identified, tested, and used to explain change. Events that occur together with regularity might or might not be a cause and effect relationship. 	 Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. Cause and effect relationships may be used to predict phenomena in natural or designed systems. Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. 	 Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. Systems can be designed to cause a desired effect. Changes in systems may have various causes that may not have equal effects.

* Adapted by Achieve from: National Research Council (2011). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academy Press. Chapter 4: Crosscutting Concepts.

K-12 Crosscutting Concepts* Progression Matrix of Elements

For use with Arizona Science Standards

3. Scale, Proportion, and Quantity – In considering phenomena, it is critical to recognize what is relevant at different size, time, and energy scales, and to recognize proportional relationships between different quantities as scales change.			
K-2 Crosscutting Statements	3-5 Crosscutting Statements	6-8 Crosscutting Statements	9-12 Crosscutting Statements
 Relative scales allow objects and events to be compared and described (e.g., bigger and smaller; hotter and colder; faster and slower). Standard units are used to measure length. 	 Natural objects and/or observable phenomena exist from the very small to the immensely large or from very short to very long time periods. Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. 	 Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. The observed function of natural and designed systems may change with scale. Proportional relationships (e.g., speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. Scientific relationships can be represented through the use of algebraic expressions and equations. Phenomena that can be observed at one scale may not be observable at another scale. 	 The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. Some systems can only be studied indirectly as they are too small, too large, too fast, or too slow to observe directly. Patterns observable at one scale may not be observable or exist at other scales. Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale. Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).

4. Systems and System Models – A system is an organized group of related objects or components; models can be used for understanding and predicting the behavior of systems.				
K-2 Crosscutting Statements	3-5 Crosscutting Statements	6-8 Crosscutting Statements	9-12 Crosscutting Statements	
 Objects and organisms can be described in terms of their parts. Systems in the natural and designed world have parts that work together. 	 A system is a group of related parts that make up a whole and can carry out functions its individual parts cannot. A system can be described in terms of its components and their interactions. 	 Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. Models are limited in that they only represent certain aspects of the system under study. 	 Systems can be designed to do specific tasks. When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. 	

* Adapted by Achieve from: National Research Council (2011). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academy Press. Chapter 4: Crosscutting Concepts.

K-12 Crosscutting Concepts* Progression Matrix of Elements

For use with Arizona Science Standards

5. Energy and Matter: Flows, Cycles, and Conservation – Tracking energy and matter flows, into, out of, and within systems helps one understand their system's behavior.			
K-2 Crosscutting Statements	3-5 Crosscutting Statements	6-8 Crosscutting Statements	9-12 Crosscutting Statements
 Objects may break into smaller pieces, be put together into larger pieces, or change shapes. 	 Matter is made of particles. Matter flows and cycles can be tracked in terms of the weight of the substances before and after a process occurs. The total weight of the substances does not change. This is what is meant by conservation of matter. Matter is transported into, out of, and within systems. Energy can be transferred in various ways and between objects. 	 Matter is conserved because atoms are conserved in physical and chemical processes. Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system. 	 The total amount of energy and matter in closed systems is conserved. Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.

6. Structure and Function – The way an object is shaped or structured determines many of its properties and functions.			
K-2 Crosscutting Statements	3-5 Crosscutting Statements	6-8 Crosscutting Statements	9-12 Crosscutting Statements
 The shape and stability of structures of natural and designed objects are related to their function(s). 	 Different materials have different substructures, which can sometimes be observed. Substructures have shapes and parts that serve functions. 	 Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts; therefore, complex natural and designed structures/systems can be analyzed to determine how they function. Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. 	 Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials.

7. Stability and Change – For both designed and natural systems, conditions that affect stability and factors that control rates of change are critical elements to consider and understand.			
K-2 Crosscutting Statements	3-5 Crosscutting Statements	6-8 Crosscutting Statements	9-12 Crosscutting Statements
 Some things stay the same while other things change. Things may change slowly or rapidly. 	 Change is measured in terms of differences over time and may occur at different rates. Some systems appear stable, but over long periods of time will eventually change. 	 Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales, including the atomic scale. Small changes in one part of a system might cause large changes in another part. Stability might be disturbed either by sudden events or gradual changes that accumulate over time. Systems in dynamic equilibrium are stable due to a balance of feedback mechanisms. 	 Much of science deals with constructing explanations of how things change and how they remain stable. Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. Feedback (negative or positive) can stabilize or destabilize a system. Systems can be designed for greater or lesser stability.

* Adapted by Achieve from: National Research Council (2011). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academy Press. Chapter 4: Crosscutting Concepts.